Knowledge of the uptake, membrane translocation, refolding and ribosome interaction of the ribosome-inactivating toxin ricin is incomplete at the present time. Ricin A chain (RTA) is the catalytic subunit of holotoxin and is also of particular interest as a vaccine candidate. For many studies into the uptake and immunological applications of ricin, it is essential to have inactive variants. Here, following error-prone polymerase chain reaction of the RTA open reading frame, we have used a modified gap-repair protocol in Saccharomyces cerevisiae to show that it is possible to rapidly generate a panel of inactive RTA mutants. Since yeast cells have ribosomes that are highly sensitive to RTA, we utilized a genetic selection based on the viability of transformants. This enabled the recovery of a number of mutations, some not previously identified, which permitted production of full-length but non-toxic RTA proteins. Such disarmed toxins may have utility as tools to study the cytosolic entry and action of RTA, and as potential vaccine candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.1330DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
ricin chain
8
rta
6
utilisation budding
4
budding yeast
4
yeast saccharomyces
4
cerevisiae generation
4
generation isolation
4
isolation non-lethal
4
ricin
4

Similar Publications

Enhancing Cannabichromenic Acid Biosynthesis in .

ACS Synth Biol

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.

View Article and Find Full Text PDF

Fluorescence recovery after photobleaching (FRAP) can be employed to investigate membrane lipid mixing of vacuoles in live budding yeast cells and distinguish the fused, hemi-fused or non-fused states of these organelles under physiological conditions. Here, we describe a protocol for labeling the outer and inner leaflets of vacuoles in live cells that allow to detect hemifusion intermediates and, thus, identify components necessary for fusion pore opening.

View Article and Find Full Text PDF

Cell-free in vitro assays offer several advantages for elucidating molecular mechanisms underlying various biological processes. Here, we describe a simple and quantitative in vitro assay using isolated yeast microsomes to measure homotypic ER membrane fusion. In this assay, membrane fusion between ER microsomes is monitored by reconstitution of luciferase activity from split luciferase fragments.

View Article and Find Full Text PDF

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!