This paper presents a novel method to embed, anchor, and cultivate cells in a controlled 3-D flow-through microenvironment. This is realized using an etched silicon pillar flow chamber filled with extracellular matrix (ECM) gel mixed with cells. At 4 degrees C, while in liquid form, ECM gel is mixed with cells and injected into the chamber. Raising the temperature to 37 degrees C results in a gel, with cells embedded. The silicon pillars both stabilize and increase the surface to volume ratio of the gel. During polymerization the gel shrinks, thus creating channels, which enables perfusion through the chip. The pillars increase the mechanical stability of the gel permitting high surface flow rates without surface modifications. Within the structure cells were still viable and proliferating after 6 days of cultivation. Our method thus makes it possible to perform medium- to long-term cultivation of cells in a controlled 3-D environment. This concept opens possibilities to perform studies of cells in a more physiological environment compared to traditional 2-D cultures on flat substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200500478 | DOI Listing |
Pharmaceutics
January 2025
Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, SI, Italy.
(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.
View Article and Find Full Text PDFPharmaceutics
January 2025
University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye.
Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Biomedicine, Texas A&M University, College Station, TX 77843, USA.
Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!