Severe impairment of mucociliary transport (MCT) is a hallmark of cystic fibrosis (CF) lung disease. Recent studies demonstrate that pharmacologic inhibition of anion and liquid secretion in pig tracheas models the MCT defect in CF through depletion of the periciliary fluid component of airway surface liquid. In the present study, the effectiveness of various aqueous instillates on rehydration of the airway surface and restoration of MCT was assessed in this model. Excised porcine tracheas were mounted in a chamber that permitted simultaneous measurement of MCT and adventitial exposure of the airways to Krebs solution. When anion and liquid secretion were inhibited by treatment with bumetanide and dimethylamiloride, MCT was greatly reduced. Luminal instillation of aqueous solutions containing surface-active substances (1% Tween80 or calfactant) transiently restored MCT to high rates in nearly all tissues. Mucosal treatment with only Krebs solution or hypertonic saline restored MCT in only one half of the tracheas. We conclude that aqueous salt solutions alone can hydrate airway surfaces and restore MCT in some tissues, but surface-active substances may provide additional benefit in restoring MCT in this model of mucociliary stasis. We speculate that administration of surface-active substances, by aerosol or lavage, might help to restore MCT in the airways of patients with CF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644211 | PMC |
http://dx.doi.org/10.1165/rcmb.2005-0214OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!