Stepwise neoplastic transformation of a telomerase immortalized fibroblast cell line.

Cancer Res

Istituto di Genetica Molecolare, Consiglio Nazionale della Ricerche, Pavia, Italy.

Published: December 2005

We have described recently a human fibroblast cell line immortalized through ectopic telomerase expression (cen3tel), in which the extension of the life span was associated with the appearance of chromosomal aberrations and with the ability to grow in the absence of solid support. As reported in this article, on further propagation in culture, cen3tel cells became neoplastically transformed, being able to form tumors in nude mice. The analysis of the cells, during the gradual transition toward the tumorigenic phenotype, allowed us to trace cellular and molecular changes associated with different phases of transformation. At the stage in which they were able to grow in agar, cen3tel cells had lost contact growth inhibition but still retained the requirement of serum to proliferate and were not tumorigenic in immunocompromised mice. Moreover, they showed a down-regulation of the INK4A locus and were resistant to oncogenic Ras-induced senescence but still retained a functional p53. Subsequently, cen3tel cells became tumorigenic, lost p53 function because of a mutation in the DNA-binding motif, and overexpressed c-myc. Interestingly, tumorigenic cells did not carry activating mutations either in the ras proto-oncogenes (H-ras, N-ras, and K-ras) or in B-raf. Cen3tel cells gradually became hyperdiploid but did not display centrosome abnormalities. To our knowledge, cen3tel is the first telomerase immortalized fibroblast line, which became neoplastically transformed. In this system, we could associate a down-regulation of the INK4A locus with anchorage-independent growth and with resistance to Ras-induced senescence and link p53 mutations and c-myc overexpression with tumorigenicity.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-1140DOI Listing

Publication Analysis

Top Keywords

cen3tel cells
16
telomerase immortalized
8
immortalized fibroblast
8
fibroblast cell
8
neoplastically transformed
8
down-regulation ink4a
8
ink4a locus
8
ras-induced senescence
8
cen3tel
6
cells
6

Similar Publications

Hyperextended telomeres promote formation of C-circle DNA in telomerase positive human cells.

J Biol Chem

May 2023

Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA. Electronic address:

Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). Currently, the primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs).

View Article and Find Full Text PDF

Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). The primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs).

View Article and Find Full Text PDF

Cells with stemness features are generated from in vitro transformed human fibroblasts.

Sci Rep

September 2018

Istituto di Genetica Molecolare, CNR, Via Abbiategrasso, 207, 27100, Pavia, Italy.

Cancer stem cells (CSCs) have been involved in the maintenance, progression and relapse of several tumors, but their origin is still elusive. Here, in vitro transformed human fibroblasts (cen3tel cells) and the tumorsphere assay were used to search for and possibly characterize CSCs in transformed somatic cells. Cen3tel cells formed spheres showing self-renewal capacity and Sox2 overexpression, suggesting that they contained a subset of cells with CSC-like features.

View Article and Find Full Text PDF

Cancer cells use two major types of movement: Mesenchymal, which is typical of cells of mesenchymal origin and depends on matrix metalloproteinase (MMP) activity, and amoeboid, which is characteristic of cells with a rounded shape and relies on the activity of Rho-associated kinase (ROCK). The present authors previously demonstrated that, during neoplastic transformation, telomerase-immortalized human fibroblasts (cen3tel cells) acquired a ROCK-dependent/MMP independent mechanism of invasion, mediated by the downregulation of the ROCK cellular inhibitor Round (Rnd)3/RhoE. In the present study, cen3tel transformation was also demonstrated to be paralleled by downregulation of Snail, a major determinant of the mesenchymal movement.

View Article and Find Full Text PDF

Super-telomeres in transformed human fibroblasts.

Biochim Biophys Acta

August 2013

Istituto di Genetica Molecolare, Pavia, Italy.

Telomere length maintenance is critical for organisms' long-term survival and cancer cell proliferation. Telomeres are kept within species-specific length ranges by the interplay between telomerase activity and telomeric chromatin organization. In this paper, we exploited telomerase immortalized human fibroblasts (cen3tel) that gradually underwent neoplastic transformation during culture propagation to study telomere composition and length regulation during the transformation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!