In Venezuela, stings by Tityus zulianus scorpions produce cardiorespiratory arrest, whereas envenoming by Tityus discrepans involves gastrointestinal/pancreatic complications, suggesting structural and/or functional differences. We sought to compare their toxin repertoires through immunological, molecular, and mass spectral analyses. First, in vivo tests showed that neutralization of T. zulianus venom toxicity by the anti-T. discrepans antivenom was not complete. To compare T. discrepans and T. zulianus long-chain (sodium channel-active) toxins, their most toxic Sephadex G-50 fractions, TdII and TzII, were subjected to acid-urea PAGE, which showed differences in composition. Amplification of toxin-encoding mRNAs using a leader peptide-based oligonucleotide rendered cDNAs representing twelve T. discrepans and two T. zulianus distinct toxin transcripts, including only one shared component, indicating divergence between T. zulianus and T. discrepans 5' region-encoded, toxin signal peptides. A 3'-UTR polymorphism was also noticed among the transcripts encoding shared components Tz1 and Td4. MALDI-TOF MS profiling of TdII and TzII produced species-specific spectra, with seven of the individual masses matching those predicted by cDNA sequencing. Phylogenetic analysis showed that the unique T. zulianus transcript-encoded sequence, Tz2, is structurally related to Tityus serrulatus and Centruroides toxins. Together with previous reports, this work indicates that T. zulianus and T. discrepans toxin repertoires differ structurally and functionally.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2005.10.011DOI Listing

Publication Analysis

Top Keywords

zulianus
8
tityus zulianus
8
tityus discrepans
8
mass spectral
8
spectral analyses
8
toxin repertoires
8
discrepans zulianus
8
tdii tzii
8
zulianus discrepans
8
discrepans
7

Similar Publications

Scorpion β toxins, peptides of ∼70 residues, specifically target voltage-gated sodium (Na(V)) channels to cause use-dependent subthreshold channel openings via a voltage-sensor trapping mechanism. This excitatory action is often overlaid by a not yet understood depressant mode in which Na(V) channel activity is inhibited. Here, we analyzed these two modes of gating modification by β-toxin Tz1 from Tityus zulianus on heterologously expressed Na(V)1.

View Article and Find Full Text PDF

Tityus zulianus venom induces massive catecholamine release from PC12 cells and in a mouse envenomation model.

Toxicon

January 2012

Cátedra de Patología General y Fisiopatología, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela.

Scorpion envenomation is a public health problem in Venezuela, mainly produced by Tityus discrepans (TD) and Tityus zulianus (TZ). Accidents by these two species differ clinically. Thus, TZ envenomation is associated with high mortality in children due to cardiopulmonary disorders, as a result of, excessive amounts of plasma catecholamines (Epinephrine) release from adrenal medulla, probably via the voltage-gated sodium-channel activated by specific scorpion toxins.

View Article and Find Full Text PDF

Specific activation of human neutrophils by scorpion venom: a flow cytometry assessment.

Toxicol In Vitro

February 2011

Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela.

Acute lung injury following envenomation by Tityus scorpion species is due in part to activation of the inflammatory response leading to release of cytotoxic leukocyte-derived products, including cytokines and possibly reactive oxygen species (ROS). Tityus zulianus envenomation in Venezuela produces cardiorespiratory complications and death by lung injury whereas stings by Tityus discrepans produce mainly gastrointestinal and pancreatic alterations. To ascertain the role played by granulocytes in the envenomation by T.

View Article and Find Full Text PDF

We provide a mitochondrial DNA-based phylogenetic hypothesis for 21 Tityus species collected in Venezuela, Trinidad, Brazil and Panama, including 12 taxa known to be toxic to humans. Our phylogenetic reconstruction is based on 850 nucleotides of the combined cytochrome oxidase subunit I and 16S rRNA genes for most species, and centered on Venezuelan scorpions owing to the detailed taxonomic and biogeographic information available for Tityus in this region. The principal phylogenetic result was the strong support for mtDNA clades representing geographical groupings associated with the Perijá mountain range, the Mérida Andes, or the central and eastern coastal ranges in Venezuela, suggesting that vicariance has been a potent force in the diversification of local scorpions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!