Probing the secondary structure of salmon SmaI SINE RNA.

Gene

Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.

Published: January 2006

SmaI is a short interspersed element (SINE) of the salmon genome, and is derived from tRNA(Lys). We probed the secondary structure of SmaI SINE RNA by enzymatic cleavage and found that the RNA structure comprises three separate domains. The 5'-terminal region (the 5' domain) forms a tRNA-like cloverleaf structure, whereas the 3'-terminal region (the 3' domain) forms an extended stem-loop. The loop region is thought to be recognized by the reverse transcriptase (RT) encoded by the long interspersed element (LINE). The two structural domains are linked by a single-stranded region (the linker domain). Our melting profile analyses indicated the presence of two structural domains having different thermal stabilities, thus supporting the domain composition described above. Based on these results, we discuss the structural generality and evolutionary advantage of the domain composition of SINE RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2005.09.027DOI Listing

Publication Analysis

Top Keywords

sine rna
12
secondary structure
8
smai sine
8
interspersed element
8
region domain
8
domain forms
8
structural domains
8
domain composition
8
domain
5
probing secondary
4

Similar Publications

Background: Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Netherlands.

Background: The TMEM106B protein is critical for proper functioning of the endolysomal system, which is utilised by all cells to traffic and degrade molecular cargo. Genome-wide association studies identified a haplotype in the TMEM106B gene that is associated with increased risk for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with TAR DNA binding protein inclusions (FTLD-TDP). However, the causal variant that drives the association has thus far remained elusive.

View Article and Find Full Text PDF

Targeting XPO1 for fighting relapsed/refractory diseases: The research progress of XPO1 inhibitors.

Bioorg Chem

December 2024

Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, PR China. Electronic address:

XPO1 is an influential member of the nuclear transporter protein family. The proteins and RNA transported by XPO1 are related to the occurrence and development of many diseases, including refractory tumor diseases and various viral infectious diseases. XPO1 is upregulated in many malignant tumors and is associated with poor prognosis.

View Article and Find Full Text PDF

SINEs are mobile genetic elements of multicellular eukaryotes that arose during evolution from various tRNAs, as well as from 5S rRNA and 7SL RNA. Like the genes of these RNAs, SINEs are transcribed by RNA polymerase III. The transcripts of some mammalian SINEs have the capability of AAUAAA-dependent polyadenylation, which is unique for transcript generated by RNA polymerase III.

View Article and Find Full Text PDF

SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!