The developmental management of 5'-nucleotidase (5nt) expression in Dictyostelium discoideum has provided a focal point for studies of gene regulation at the level of transcription. To identify DNA-protein interactions involved in the 5nt regulation, EMSAs were performed using short oligonucleotides, designed to span a 357bp promoter region. A binding activity (R(f)=0.33) was identified and shown to be specific to the nucleotide sequence between -338 and -309bp relative to 5nt ATG. Characterization of the binding activity, including the effects of salt and temperature, provided insight into the nature and stability of the protein. The protein was purified in a series of chromatographic stages, including DEAE-Sephacel, heparin-Sepharose, DNA affinity, and gel filtration. SDS-PAGE analysis identified a polypeptide with a molecular weight of 70kDa. Mass spectrometry revealed that the purified protein was a putative formyltetrahydrofolate synthase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2005.11.008DOI Listing

Publication Analysis

Top Keywords

dictyostelium discoideum
8
binding activity
8
identification purification
4
purification dna-binding
4
protein
4
dna-binding protein
4
protein interacting
4
interacting promoter
4
promoter 5'-nucleotidase
4
5'-nucleotidase dictyostelium
4

Similar Publications

Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.

View Article and Find Full Text PDF

Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.

View Article and Find Full Text PDF

Mesoscale heterogeneity is a critical determinant for spiral pattern formation in developing social amoeba.

Sci Rep

January 2025

Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan.

Heterogeneity is a critical determinant for multicellular pattern formation. Although the importance of microscale and macroscale heterogeneity at the single-cell and whole-system levels, respectively, has been well accepted, the presence and functions of mesoscale heterogeneity, such as cell clusters with distinct properties, have been poorly recognized. We investigated the biological importance of mesoscale heterogeneity in signal-relaying abilities (excitability) in the self-organization of spiral waves of intercellular communications by studying the self-organized pattern formation in a population of Dictyostelium discoideum cells, a classical signal-relaying system model.

View Article and Find Full Text PDF

Optogenetic control of cAMP oscillations reveals frequency-selective transcription factor dynamics in Dictyostelium.

Development

January 2025

Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.

Oscillatory dynamics and their modulation are crucial for cellular decision-making; however, analysing these dynamics remains challenging. Here, we present a tool that combines the light-activated adenylate cyclase mPAC with the cAMP biosensor Pink Flamindo, enabling precise manipulation and real-time monitoring of cAMP oscillation frequencies in Dictyostelium. High-frequency modulation of cAMP oscillations induced cell aggregation and multicellular formation, even at low cell densities, such as a few dozen cells.

View Article and Find Full Text PDF

Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!