Objective: Intracellular survival of mycobacteria within monocytes is a crucial stage in the pathogenesis of tuberculosis. The aim was to check intracellular survival of Mycobacterium fortuitum within the human monocytes exposed to He-Ne and nitrogen laser irradiation.

Background Data: Tuberculosis remains one of the most important infectious diseases for developing countries. Low-level laser therapy (LLLT) has been tried to treat tubercular cavitory lung disease with encouraging results. The in vitro photobiological effect of low level laser radiation on the intracellular mycobacteria needs to be evaluated before we could go for large clinical trials.

Methods: The aliquots of human monocytes from peripheral blood of healthy volunteers and tuberculosis cases were exposed to He-Ne or nitrogen laser beam. The non-irradiated monocytes from the same source served as controls. The monocytes were then challenged with M. fortuitum, and surviving mycobacteria within monocytes were subjected to viable counts.

Results: Enhanced killing of mycobacterial cells was seen among monocytes exposed to He-Ne and nitrogen laser irradiation.

Conclusions: He-Ne and nitrogen laser irradiation activates the monocytes to increase intracellular killing of mycobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1089/pho.2005.23.571DOI Listing

Publication Analysis

Top Keywords

nitrogen laser
20
he-ne nitrogen
16
human monocytes
12
exposed he-ne
12
monocytes
9
laser irradiation
8
intracellular survival
8
mycobacteria monocytes
8
monocytes exposed
8
laser
7

Similar Publications

Preparation of halloysite nanotube-based monolithic column for small molecules and protein analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:

s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.

View Article and Find Full Text PDF

Meteoritic impacts on planetary surfaces deliver a significant amount of energy that can produce prebiotic organic compounds such as cyanides, which may be a key step to the formation of biomolecules. To study the chemical processes of impact-induced organic synthesis, we simulated the physicochemical processes of hypervelocity impacts (HVI) in experiments with both high-speed C projectiles and laser ablation. In the first approach, a C beam was accelerated to collide with ammonium nitrate (NHNO) to reproduce the shock process and plume generation of meteoritic impacts on nitrogen-rich planetary surfaces.

View Article and Find Full Text PDF

Hypertrophic scars (HTSs) are the result of an abnormal healing process resulting from burns and other severe traumas. The symptoms of that condition include skin irritation, discomfort, and itching. This study aimed to assess the efficacy of fractional carbon dioxide (CO) laser therapy alone or with triamcinolone or 5-fluorouracil (FU) in the treatment of early post-burn hypertrophic scars (HTSs) that develop during the first 6 months after the injury.

View Article and Find Full Text PDF

A glovebox-integrated confocal microscope for quantum sensing in inert atmosphere.

Rev Sci Instrum

January 2025

Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

Confocal microscopy is an invaluable tool for studying fluorescent materials and finds a wide application in biology and in quantum sensing. Usually, these experiments are performed under ambient conditions, but many materials are air sensitive (for example, black phosphorus) and degrade quickly under the strong laser irradiance. Here, we present a glovebox-integrated confocal microscope designed for nitrogen-vacancy (NV) center-based nano-scale sensing and NMR spectroscopy in an inert gas atmosphere.

View Article and Find Full Text PDF

Morphea is a chronic inflammatory fibrosing disorder. Since fibrosis is the hallmark of both scars and morphea, our attention was raised for the possible use of Fractional Ablative CO lasers and microneedling as treatment modalities for morphea. To compare the efficacy and safety of Fractional Ablative CO lasers and microneedling in the treatment of morphea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!