[reaction: see text] The electrochemistry of 1,2-dinitrobenzene (1,2-DNB), 1,3-dinitrobenzene (1,3-DNB), and 1,4-dinitrobenzene (1,4-DNB) is strongly affected by the presence of 1,3-diphenylurea. In DMF, the second reduction potential of all three DNBs shifts substantially positive in the presence of the urea, indicating very strong hydrogen bonding to the dianions. With 1,2- and 1,3-DNB, the hydrogen bonding leads to irreversible chemistry, likely due to proton transfer from the urea to the dianions. No such irreversible behavior is observed with 1,4-DNB. Instead, the second reduction shifts into the first reduction, producing a single, reversible, two-electron cyclic voltammetric wave at high urea concentrations. Computer simulations show that the changes in wave shape accompanying this process are well accounted for by the stepwise formation of a 1:1 and 2:1 1,3-diphenylurea/DNB2- complex, with sequential binding constants of approximately 5.5 x 10(4) M(-1) and approximately 4.0 x 10(3) M(-1) in DMF.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo051893mDOI Listing

Publication Analysis

Top Keywords

hydrogen bonding
12
second reduction
8
electrochemically controlled
4
controlled hydrogen
4
bonding redox-dependent
4
redox-dependent formation
4
formation diarylurea/dinitrobenzene2-
4
diarylurea/dinitrobenzene2- complex
4
complex [reaction
4
[reaction text]
4

Similar Publications

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore-radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet-radical pairs that can result in the formation of quartet states by spin mixing.

View Article and Find Full Text PDF

Due to health reasons of polyglycerol polyricinoleate (PGPR), there has been a growing interest in reducing it. To address this, this study developed the PGPR/Protein (whey, pea, and chickpea protein isolates) emulsifier combinations. The effects of these combinations on the preparation, structure, physicochemical and in vitro digestive properties of W/O/W microcapsules were evaluated.

View Article and Find Full Text PDF

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!