The 3435C-->T polymorphism at the multidrug resistance gene 1 (MDR1) was examined in 74 patients with human immunodeficiency virus who initiated atazanavir therapy. The MDR1 genotype distribution at position 3435 was 28% CC, 45% CT, and 27% TT. Plasma levels of atazanavir were significantly higher in patients with genotype CC than in those with CT or TT, and bilirubin levels correlated with atazanavir concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1086/499056DOI Listing

Publication Analysis

Top Keywords

plasma levels
8
levels atazanavir
8
3435c-->t polymorphism
8
polymorphism multidrug
8
multidrug resistance
8
resistance gene
8
atazanavir
4
atazanavir risk
4
risk hyperbilirubinemia
4
hyperbilirubinemia predicted
4

Similar Publications

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

Objectives: Acute kidney injury (AKI) is a syndrome with high mortality and morbidity in part due to delayed recognition based on changes in creatinine. A marker for AKI based on a single measurement is needed and therefore the performance of a single measurement of plasma neutrophil gelatinase-associated lipocalin (pNGAL) to predict AKI in patients admitted to the emergency department was tested.

Methods: Samples from the Triage study which included 6005 consecutive adult patients admitted to the emergency department were tested for pNGAL.

View Article and Find Full Text PDF

Objectives: Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD), even though the molecular mechanisms underlying its efficacy remain largely unclear. This study aimed, for the first time, to analyze plasma levels of miRNAs, key regulators of gene expression, in TRD patients undergoing ECT to investigate potential changes during treatment and their associations with symptom improvement.

Methods: The study involved 27 TRD patients who underwent ECT.

View Article and Find Full Text PDF

Platelet-Rich Plasma in the Treatment of Diabetic Foot Ulcers.

Adv Skin Wound Care

January 2025

At Mayo Clinic, Rochester, Minnesota, United States, Paul T. Gomez, BS, is Summer Research Fellow, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences; Saranya P. Wyles, MD, PhD, is Consultant, Department of Dermatology; and Karen L. Andrews, MD, is Director, Vascular Ulcer and Wound Healing Clinic/Gonda Vascular Center, and Consultant, Department of Physical Medicine and Rehabilitation. At Mayo Clinic, Jacksonville, Florida, Jennifer R. Arthurs is APRN, Center for Regenerative Medicine; and Alison J. Bruce, MB, ChB, is Consultant, Department of Dermatology.

Background: Chronic nonhealing neuropathic foot ulcers affect approximately 15% to 30% of patients with diabetes mellitus and are associated with significant morbidity and mortality. Although current strategies to address these chronic wounds include a multifactorial approach, clinical outcomes remain poor and warrant improvement. Platelet-rich plasma (PRP), derived from autologous or allogeneic blood, is an emerging regenerative product that aims to serve as an adjuvant to standard diabetic foot ulcer (DFU) treatment.

View Article and Find Full Text PDF

Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!