The colonization of Eurasia by early humans is a key event after their spread out of Africa, but the nature, timing and ecological context of the earliest human occupation of northwest Europe is uncertain and has been the subject of intense debate. The southern Caucasus was occupied about 1.8 million years (Myr) ago, whereas human remains from Atapuerca-TD6, Spain (more than 780 kyr ago) and Ceprano, Italy (about 800 kyr ago) show that early Homo had dispersed to the Mediterranean hinterland before the Brunhes-Matuyama magnetic polarity reversal (780 kyr ago). Until now, the earliest uncontested artefacts from northern Europe were much younger, suggesting that humans were unable to colonize northern latitudes until about 500 kyr ago. Here we report flint artefacts from the Cromer Forest-bed Formation at Pakefield (52 degrees N), Suffolk, UK, from an interglacial sequence yielding a diverse range of plant and animal fossils. Event and lithostratigraphy, palaeomagnetism, amino acid geochronology and biostratigraphy indicate that the artefacts date to the early part of the Brunhes Chron (about 700 kyr ago) and thus represent the earliest unequivocal evidence for human presence north of the Alps.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature04227DOI Listing

Publication Analysis

Top Keywords

kyr ago
20
northern europe
8
780 kyr
8
ago
6
kyr
5
earliest
4
earliest record
4
human
4
record human
4
human activity
4

Similar Publications

The timing, tempo, and causative mechanisms of Ocean Anoxic Event 1a (OAE1a), one of several such abrupt perturbations of the Mesozoic global carbon cycle, remain uncertain. Mudstones interbedded with tuffs in Hokkaido, Japan preserve carbon and osmium isotope shifts recording OAE1a. U-Pb zircon ages of tuffs constrain the OAE1a onset to 119.

View Article and Find Full Text PDF

Hydrological restriction from the Atlantic Ocean transformed the Mediterranean Sea into a giant saline basin during the Messinian Salinity Crisis (5.97-5.33 million years ago).

View Article and Find Full Text PDF

Human impacts overwhelmed climate as the dominant factor controlling lacustrine organic matter accumulation in Erhai Lake 2000 years ago, Southwest China.

Sci Total Environ

October 2024

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Climate and human activity are two important factors in regulating organic matter (OM) accumulation in the lake environment. However, when and how anthropogenic impacts have affected lacustrine OM accumulation in southwest China during the late Holocene have not yet been well defined. Here, a 16.

View Article and Find Full Text PDF

Intensification of northern hemisphere glaciation (iNHG), ~2.7 million years ago (Ma), led to establishment of the Pleistocene to present-day bipolar icehouse state. Here we document evolution of orbital- and millennial-scale Asian winter monsoon (AWM) variability across the iNHG using a palaeomagnetically dated centennial-resolution grain size record between 3.

View Article and Find Full Text PDF

Greenland ice core records exhibited 100-fold higher dust concentrations during the Last Glacial Maximum (LGM) than during the Holocene, and dust input temporal variability corresponded to different climate states in the LGM. While East Asian deserts, the Sahara, and European loess have been suggested as the potential source areas (PSAs) for Greenland LGM dust, millennial-scale variability in their relative contributions within the LGM remains poorly constrained. Here, we present the morphological, mineralogical, and geochemical characteristics of insoluble microparticles to constrain the provenance of dust in Greenland NEEM ice core samples covering cold Greenland Stadials (GS)-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!