Although membrane proteins often rely on ionizable residues for structure and function, their ionization states under physiological conditions largely elude experimental estimation. To gain insight into the effect of the local microenvironment on the proton affinity of ionizable residues, we have engineered individual lysines, histidines and arginines along the alpha-helical lining of the transmembrane pore of the nicotinic acetylcholine receptor. We can detect individual proton binding-unbinding reactions electrophysiologically at the level of a single proton on a single side chain as brief blocking-unblocking events of the passing cation current. Kinetic analysis of these fluctuations yields the position-dependent rates of proton transfer, from which the corresponding pK(a) values and shifts in pK(a) can be calculated. Here we present a self-consistent, residue-by-residue description of the microenvironment around the pore-lining transmembrane alpha-helices (M2) in the open-channel conformation, in terms of the excess free energy that is required to keep the engineered basic side chains protonated relative to bulk water. A comparison with closed-channel data leads us to propose that the rotation of M2, which is frequently invoked as a hallmark of the gating mechanism of Cys-loop receptors, is minimal, if any.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1384014 | PMC |
http://dx.doi.org/10.1038/nature04293 | DOI Listing |
Alzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
J Phys Chem B
December 2024
Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India.
Understanding RNA-protein interactions is crucial for uncovering the mechanisms of cellular processes and can provide insights into the basis of various diseases, paving the way for the development of targeted therapeutic interventions. Exposure to stress conditions, such as hypoxia, leads to a drop in intracellular pH, which, in turn, alters the ionization states of amino acid residues and RNA bases, affecting the charge distribution and electrostatic interactions between RNA and proteins. In addition, pH also perturbs the structure and dynamics of proteins via the disruption of H-bonds and ionic interactions.
View Article and Find Full Text PDFChem Biodivers
December 2024
Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
Diabetes is a multifactorial global health disorder marked by unusually high plasma glucose levels, which can lead to serious consequences including diabetic neuropathy, kidney damage, retinopathy, and cardiovascular disease. One effective therapy approach for reducing hyperglycemia associated with type 2 diabetes is to target α-glucosidase, enzymes that catalyze starch breakdown in the intestine. In the current study, two new (1, 2) and nine known (3-11) compounds were isolated from the rutaceous plant Haplophyllum tuberculatum and characterized by extensive nuclear magnetic resonance spectroscopic techniques and high-resolution electrospray ionization mass spectrometry.
View Article and Find Full Text PDFChemistry
December 2024
Saarland University, Faculty of Natural Sciences and Technology, Campus Saarbrücken, 66123, Saarbrücken, GERMANY.
The synthesis of differently substituted polyferrocenylmethylenes (PFM) via ring-opening transmetalation polymerization (ROTP) is reported. A number of novel, symmetrically and asymmetrically substituted carba[1]magnesocenophanes have been prepared, which were used as precursors and allowed investigations of the influence of different substitution patterns on the PFM polymer properties. The novel carba[1]magnesocenophanes have been fully characterized by 1H and 13C NMR spectroscopy, and structurally authenticated by single-crystal X-ray diffraction (SC-XRD).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States.
We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!