UTP14c is a recently acquired retrogene associated with spermatogenesis and fertility in man.

Biol Reprod

Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030 , USA.

Published: April 2006

In the mouse, Utp14b is a retrogene transposed to an intron of Acsl3 (long-chain-fatty-acid coenzyme A ligase 3) on mouse chromosome 1. It represents a copy of Utp14a, a ubiquitously expressed, X-linked gene involved in 18S rRNA synthesis. The Utp14b is specifically expressed in male germ cells and, when mutated in the jsd (juvenile spermatogonial depletion) mouse, results in early spermatogenic arrest and male infertility. To understand the function and relevance of the orthologous human gene in testis pathology, we mapped transcripts and searched for mutations within the gene in infertile males. In humans, the strict ortholog of UTP14b has degenerated and is no longer functional. However, a second active retroposon, UTP14c, is found within a widely expressed, putative glycosyl transferase-containing gene, GT8, on human chromosome 13. Unlike mouse Utp14b, which is only expressed in the male germ line, human UTP14c is expressed in testis and ovary, which is consistent with having a gonad-specific function. To determine if UTP14c is functionally equivalent to mouse Utp14b and essential to spermatogenesis in humans, we screened DNA from 234 nonobstructive, azoospermic/severely oligospermic males and 208 proven-fertile controls for mutations within UTP14c. We identified a mutation in three unrelated patients that introduces an in-frame stop codon truncating the UTP14c protein near the carboxyl terminus. These data indicate that UTP14c may be functionally equivalent to mouse Utp14b and required for normal male fertility in humans. The novel evolution of retroposed UTP14 genes supports the hypothesis that retrogenes play an important role in evolution via regulation of male reproductive fitness.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.105.046698DOI Listing

Publication Analysis

Top Keywords

mouse utp14b
16
utp14b expressed
8
expressed male
8
male germ
8
utp14c expressed
8
utp14c functionally
8
functionally equivalent
8
equivalent mouse
8
utp14c
7
mouse
6

Similar Publications

Because mutations in the human UTP14C gene are associated with male infertility, we sought to develop a method for fertility restoration in azoospermic mice with a mutation in the orthologous Utp14b(jsd) (jsd) gene that have spermatogonial arrest. The method is based on our observation that elevation of testicular temperatures restores spermatogonial differentiation in jsd mutant mice. To non-surgically raise intrascrotal temperatures we placed these mice in incubators at different elevated ambient temperatures.

View Article and Find Full Text PDF

Why both testosterone (T) suppression and cryptorchidism reverse the block in spermatogonial differentiation in adult mice homozygous for the juvenile spermatogonial depletion (jsd) mutation has been a conundrum. To resolve this conundrum, we analyzed interrelations between T suppression, testicular temperature, and spermatogonial differentiation and used in vitro techniques to separate the effects of the two treatments on the spermatogonial differentiation block in jsd mice. Temporal analysis revealed that surgical cryptorchidism rapidly stimulated spermatogonial differentiation whereas androgen ablation treatment produced a delayed and gradual differentiation.

View Article and Find Full Text PDF

Spermatogenesis is dependent primarily on testosterone action on the Sertoli cells, but the molecular mechanisms have not been identified. Attempts to identify testosterone-regulated target genes in Sertoli cells have used microarray analysis of gene expression in mice lacking the androgen receptor (AR) in Sertoli cells (SCARKO) and wild-type mice, but the analyses have been complicated both by alteration of germ cell composition of the testis when pubertal or adult mice were used and by differences in Sertoli-cell gene expression from the expression in adults when prepubertal mice were used. To overcome these limitations and identify AR-regulated genes in adult Sertoli cells, we compared gene expression in adult jsd (Utp14b jsd/jsd, juvenile spermatogonial depletion) mouse testes and with that in SCARKO-jsd mouse testes, since their cellular compositions are essentially identical, consisting of only type A spermatogonia and somatic cells.

View Article and Find Full Text PDF

Spermatogenesis is dependent primarily on testosterone action on the Sertoli cells, but the molecular mechanisms have not been identified. Attempts to identify testosterone-regulated target genes in Sertoli cells have used microarray analysis of gene expression in mice lacking the androgen receptor (AR) in Sertoli cells (SCARKO) and wild-type mice, but the analyses have been complicated both by alteration of germ cell composition of the testis when pubertal or adult mice were used and by differences in Sertoli-cell gene expression from the expression in adults when prepubertal mice were used. To overcome these limitations and identify AR-regulated genes in adult Sertoli cells, we compared gene expression in adult jsd (Utp14b(jsd/jsd), juvenile spermatogonial depletion) mouse testes and with that in SCARKO-jsd mouse testes, since their cellular compositions are essentially identical, consisting of only type A spermatogonia and somatic cells.

View Article and Find Full Text PDF

Testosterone acting through the androgen receptor (AR) maintains the arrest of spermatogonial differentiation in juvenile spermatogonial depletion (jsd mutation in the Utp14b gene) mutant adult male mice. It is not known which of the somatic cell types expressing AR mediates this inhibition. To determine whether Sertoli cells are responsible, we selectively eliminated AR in Sertoli cells in jsd mice containing a floxed-Ar gene and an anti-Müllerian hormone-Cre transgene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!