The output of the spinal central pattern generator for locomotion falls into two broad categories: alternation between antagonistic muscles and double bursting within muscles acting on multiple joints. We first model an alternating half-center and then present two different models of double bursting. The first double-bursting model consists of a central clock with an explicit one-to-one mapping between interneuron activity and model output. The second double-bursting model consists of a half-center with an added feedback neuron. Models are built using rate-coded leaky integrator neurons with slow self-inhibition. Structure-function relationships are explored by the addition of noise. The interaction of noise with the dynamics of each network creates a unique pattern of correlation between phases of the simulated cycle. The effects of noise can be explained by perturbation of deterministic versions of the networks. Three basic results were obtained: slow self-inhibitory currents lead to correlations between parts of the step cycle that are separated in time and network relative; model outputs are most sensitive to perturbations presented just before competitive switches in network activity, and clock-like models possess substantial symmetries within the correlation structure of burst durations, whereas the correlation structure of feedback models are asymmetric. Our models suggest that variability in burst length durations can be analyzed to make inferences about the structure of the spinal networks for locomotion. In particular, correlation patterns within double-bursting outputs may yield important clues regarding the interaction between more central, clock-like networks and feedback from more peripheral interneurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.01157.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!