Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cellular endomembrane system requires the proper kinetic balance of synthesis and degradation of its individual components, which is maintained in part by a specific membrane fusion apparatus. In this study, we describe the molecular properties of D12, which was identified from a mouse expression library. This C-terminal anchored membrane protein has sequence similarity to both a yeast soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE), Use1p/Slt1p, and a recently identified human syntaxin 18-binding protein, p31. D12 formed a tight complex with syntaxin 18 as well as Sec22b and bound to alpha-SNAP, indicating that D12 is a SNARE protein. Although the majority of D12 is located in the endoplasmic reticulum and endoplasmic reticulum-Golgi intermediate compartments at steady state, overexpression or knockdown of D12 had no obvious effects on membrane trafficking in the early secretory pathway. However, suppression of D12 expression caused rapid appearance of lipofuscin granules, accompanied by apoptotic cell death without the apparent activation of the unfolded protein response. The typical cause of lipofuscin formation is the impaired degradation of mitochondria by lysosomal degradative enzymes, and, consistent with this, we found that proper post-Golgi maturation of cathepsin D was impaired in D12-deficient cells. This unexpected observation was supported by evidence that D12 associates with VAMP7, a SNARE in the endosomal-lysosomal pathway. Hence, we suggest that D12 participates in the degradative function of lysosomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M509715200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!