Background Information: Autophagy is a catabolic process for degradation of cytoplasmic components in the vacuolar apparatus. A genome-wide survey recently showed evolutionary conservation among autophagy genes in yeast, mammals and plants. To elucidate the molecular and subcellular machinery responsible for the sequestration and subsequent digestion of intracellular material in plants, we utilized a combination of morphological and molecular methods (confocal laser-scanning microscopy, transmission electron microscopy and real-time PCR respectively).

Results: Autophagy in Arabidopsis thaliana suspension-cultured cells was induced by carbon starvation, which triggered an immediate arrest of cell growth together with a rapid degradation of cellular proteins. We followed the onset of these responses and, in this report, provide a clear functional classification for the highly polymorphic autophagosomes by which the cell sequesters and degrades a portion of its own cytoplasm. Quantification of autophagy-related structures shows that cells respond to the stress signal by a rapid and massive, but transient burst of autophagic activity, which adapts to the stress signal. We also monitored the real-time expressions of AtATG3, AtATG4a, AtATG4b, AtATG7 and AtATG8a-AtATG8i genes, which are orthologues of yeast genes involved in the Atg8 ubiquitination-like conjugation pathway and are linked to autophagosome formation. We show that these autophagy-related genes are transiently up-regulated in a co-ordinated manner at the onset of starvation.

Conclusions: Sucrose starvation induces autophagy and up-regulates orthologues of the yeast Atg8 conjugation pathway genes in Arabidopsis cultured cells. The AtATG3, AtATG4a, AtATG4b, AtATG7 and AtATG8a-AtATG8i genes are expressed in successive waves that parallel the biochemical and cytological remodelling that takes place. These genes thus serve as early markers for autophagy in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BC20040516DOI Listing

Publication Analysis

Top Keywords

genes
8
autophagy-related genes
8
genes arabidopsis
8
stress signal
8
atatg3 atatg4a
8
atatg4a atatg4b
8
atatg4b atatg7
8
atatg7 atatg8a-atatg8i
8
atatg8a-atatg8i genes
8
orthologues yeast
8

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Bidirectional recurrent neural network approach for predicting cervical cancer recurrence and survival.

Sci Rep

December 2024

School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.

Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes.

Sci Rep

December 2024

Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.

Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.

View Article and Find Full Text PDF

The chromatin remodeling factor OsINO80 promotes H3K27me3 and H3K9me2 deposition and maintains TE silencing in rice.

Nat Commun

December 2024

State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.

The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!