Background Information: During apoptosis, the first morphological change is a distinct cell shrinkage known as the AVD (apoptotic volume decrease). This event is driven by a loss of intracellular K(+), which creates an osmotic gradient, drawing water out of the cell through AQPs (aquaporins). Loss of water in balance with K(+) would create a shrunken cell with an equivalent intracellular concentration of K(+) ([K(+)](i) = 140 mM). However, we have previously shown that the [K(+)](i) of the shrunken apoptotic cell is 35 mM, and this level is absolutely essential for the activation of apoptotic enzymes. We have recently found that AQPs are inactivated following the AVD, so that continued loss of K(+) will reduce the intracellular concentration to this critical level. Using thymocytes, we have investigated the expression profile and regulation of the AQP family members.
Results: In the present study, we have found that AQP1, AQP8 and AQP9 are present in non-apoptotic thymocytes and localized primarily to the plasma membrane. Expression and localization did not change when these cells were induced to undergo apoptosis by growth factor withdrawal for 24 h. To explore other possible mechanisms by which these water channels are inactivated, we investigated their association with CAV-1 (caveolin-1), binding to which is known to inactivate a variety of proteins. We found that CAV-1 is present in thymocytes and that this protein co-localizes with a portion of AQP1 in normal (non-apoptotic) thymocytes. However, thymocytes induced to undergo apoptosis greatly increase their AQP1/CAV-1 association.
Conclusions: Taken together, these results indicate that AQPs are localized to the plasma membrane of shrunken apoptotic thymocytes where increased binding to CAV-1 potentially inactivates them. AQP inactivation, coupled with continued K(+) efflux, then allows the [K(+)](i) to decrease to levels conducive for the activation of downstream apoptotic enzymes and the completion of the apoptotic cascade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BC20040131 | DOI Listing |
NMR Biomed
February 2025
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Sodium MRI can measure sodium concentrations in people with multiple sclerosis, but the extent to which these alterations reflect metabolic dysfunction in the absence of tissue damage or neuroaxonal loss remains uncertain. Increases in total sodium concentration and extracellular sodium concentration are believed to be indicative of tissue disruption and extracellular space expansion. Conversely, increase in intracellular sodium concentration may represent early and transient responses to neuronal insult, preceding overt tissue damage.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
Nutrient sensors allow cells to adapt their metabolisms to match nutrient availability by regulating metabolic pathway expression. Many such sensors are cytosolic receptors that measure intracellular nutrient concentrations. One might expect that inducing the metabolic pathway that degrades a nutrient would reduce intracellular nutrient levels, destabilizing induction.
View Article and Find Full Text PDFLangmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFPLoS Biol
January 2025
Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
Microtubule nucleation is important for microtubule organization in dendrites and for neuronal injury responses. The core nucleation protein, γTubulin (γTub), is localized to dendrite branch points in Drosophila sensory neurons by Wnt receptors and scaffolding proteins on endosomes. However, whether Wnt ligands are important is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!