Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique.

AAPS PharmSciTech

Pharmaceutical Biotechnology Division, Department of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530 003, India.

Published: October 2005

The purpose of this investigation was to study the effect of Bacillus subtilis PE-11 cells immobilized in various matrices, such as calcium alginate, k-Carrageenan, ployacrylamide, agar-agar, and gelatin, for the production of alkaline protease. Calcium alginate was found to be an effective and suitable matrix for higher alkaline protease productivity compared to the other matrices studied. All the matrices were selected for repeated batch fermentation. The average specific volumetric productivity with calcium alginate was 15.11 U/mL/hour, which was 79.03% higher production over the conventional free-cell fermentation. Similarly, the specific volumetric productivity by repeated batch fermentation was 13.68 U/mL/hour with k-Carrageenan, 12.44 U/mL/hour with agar-agar, 11.71 U/mL/hour with polyacrylamide, and 10.32 U/mL/hour with gelatin. In the repeated batch fermentations of the shake flasks, an optimum level of enzyme was maintained for 9 days using calcium alginate immobilized cells. From the results, it is concluded that the immobilized cells of B subtilis PE-11 in calcium alginate are more efficient for the production of alkaline protease with repeated batch fermentation. The alginate immobilized cells of B subtilis PE-11 can be proposed as an effective biocatalyst for repeated usage for maximum production of alkaline protease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750382PMC
http://dx.doi.org/10.1208/pt060348DOI Listing

Publication Analysis

Top Keywords

alkaline protease
20
calcium alginate
20
production alkaline
16
immobilized cells
16
subtilis pe-11
16
repeated batch
16
batch fermentation
12
bacillus subtilis
8
specific volumetric
8
volumetric productivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!