Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A unique ultranarrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filter for atmospheric water vapor lidar measurements was designed, fabricated, and successfully tested. Customized optical fiber Bragg gratings were fabricated so that two transmission filter peaks occurred: one (89% transmission, 8 pm FWHM) near the 946-nm water vapor absorption line and the other peak (80% transmission, 4 pm FWHM) at a region of no absorption. Both transmission peaks were within a 2.66-nm stop band. Demonstration of tension tuning to the 946.0003-nm water vapor line was achieved, and the performance characterization of custom-made optical fiber Bragg grating filters are presented. These measurements are successfully compared to theoretical calculations using a piecewise-matrix form of the coupled-mode equations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.44.007371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!