Elevation of plasma homocysteine levels has been recognized as an independent risk factor for the development of cardiovascular disease, a major complication of diabetes. Plasma homocysteine reflects a balance between its synthesis via S-adenosyl-L-methionine-dependent methylation reactions and its removal through the transmethylation and the transsulfuration pathways. Betaine-homocysteine methyltransferase (BHMT, EC 2.1.1.5) is one of the enzymes involved in the remethylation pathway. BHMT, a major zinc metalloenzyme in the liver, catalyzes the transfer of methyl groups from betaine to homocysteine to form dimethylglycine and methionine. We have previously shown that plasma homocysteine levels and the transsulfuration pathway are affected by diabetes. In the present study, we found increased BHMT activity and mRNA levels in livers from streptozotocin-diabetic rats. In the rat hepatoma cell line (H4IIE cells), glucocorticoids (triamcinolone) increased the level and rate of BHMT mRNA synthesis. In the same cell line, insulin decreased the abundance of BHMT mRNA and the rate of de novo mRNA transcription of the gene. Thus the decreased plasma homocysteine in various models of diabetes could be due to enhanced homocysteine removal brought about by a combination of increased transsulfuration of homocysteine to cysteine and increased remethylation of homocysteine to methionine by BHMT.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00498.2005DOI Listing

Publication Analysis

Top Keywords

plasma homocysteine
16
homocysteine
8
homocysteine levels
8
bhmt mrna
8
bhmt
6
effects diabetes
4
diabetes insulin
4
insulin betaine-homocysteine
4
betaine-homocysteine s-methyltransferase
4
s-methyltransferase expression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!