Memory T cells can be classified as central memory (T(CM), CD45RA(neg)CCR7(+)), effector memory (T(EM), CD45RA(neg)CCR7(neg)), and terminally differentiated cells (T(TD), CD45RA(+)CCR7(neg)) with different homing and effector capacities. In 101 healthy subjects aged from 5 to 96 years, distinct dynamics were evidenced between circulating CD4(+) and CD8(+) T cell populations. Naive CD4(+) and CD8(+) T cells decreased linearly with age, CD8(+) twice more rapidly. Memory cells outnumbered naive cells on average at 37.4 in the CD4(+) and 29.5 years of age in the CD8(+) pool. CD4(+) T(CM) and T(EM) cells were positively correlated and increased linearly at a similar rate with age, while CD4(+) T(TD) remained rare. CD8(+) T(EM) and T(TD) accumulated linearly with age, while T(CM) increased only slightly, and each memory subset was negatively correlated to the two others. Almost all CD8(+) T(TD) and some CD8(+) T(EM) had lost CD28 expression. Despite different dynamics, each individual CD4(+) naive and memory subset was correlated to the synonymous CD8(+) subset. Half of the subjects aged 65 years or older were characterized by extremely reduced CD8(+) naive and increased CD8(+) T(TD) cell counts, which could indicate an acceleration of the decay of the immune system from this age onward.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mad.2005.11.001DOI Listing

Publication Analysis

Top Keywords

memory cells
20
effector memory
12
cd8+
11
cells
9
memory
9
terminally differentiated
8
subjects aged
8
aged years
8
cd4+ cd8+
8
linearly age
8

Similar Publications

Limited restoration of T cell subset distribution and immune function in older people living with HIV-1 receiving HAART.

Immun Ageing

January 2025

State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.

Background: Older people living with HIV-1 (PLWH) experience a dual burden from the combined effects of aging and HIV-1 infection, resulting in significant immune dysfunction. Despite receiving HAART, immune reconstitution is not fully optimized. The objective of this study was to investigate the impact of aging and HAART on T cell subsets and function in PLWH across different age groups, thereby providing novel insights into the prognosis of older PLWH.

View Article and Find Full Text PDF

Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging.

J Neuroinflammation

January 2025

Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.

Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.

Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.

View Article and Find Full Text PDF

Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) is a chromatin modifier responsible for regulating the demethylation of histone H3 lysine 27 trimethylation (H3K27me3), which is crucial for human neurodevelopment. To date, the impact of UTX on neurodevelopment remains elusive. Therefore, this study aimed to investigate the potential molecular mechanisms underlying the effects of UTX on neurodevelopment through untargeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).

View Article and Find Full Text PDF

Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!