This study reports the fabrication and characterization of nanoscale organic light-emitting diodes (nano-OLEDs) based on poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV). The nano-OLEDs were fabricated by spin casting MEH-PPV into cylindrical nanoholes lithographically patterned into silicon nitride. The electroluminescence (EL) spectrum of MEH-PPV was similar to its photoluminescence spectrum, confirming radiative decay from the same excited state. Device characteristics in the form of current density and EL versus applied electric field are presented and compared with those of a large-scale OLED.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl051811+ | DOI Listing |
J Am Chem Soc
January 2025
EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
Catalysis plays a vital role in green chemistry by improving process efficiency, reducing waste, and minimizing environmental impact. A biochar-modified g-CN·SOH (BCNSA) catalyst was developed using biochar derived from amla seed powder and CNSA. CNSA was synthesized the reaction of g-CN with chlorosulfonic acid.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFNanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFACS Nano
January 2025
Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!