Using atomistic, semiempirical pseudopotential calculations, we show that if one assumes the simplest form of a surface state in a CdSe nanocrystal--an unpassivated surface anion site--one can explain theoretically several puzzling aspects regarding the observed temperature dependence of the radiative decay of excitons. In particular, our calculations show that the presence of surface states leads to a mixing of the dark and bright exciton states, resulting in a decrease of 3 orders of magnitude of the dark-exciton radiative lifetime. This result explains the persistence of the zero-phonon emission line at low temperature, for which thermal population of higher-energy bright-exciton states is negligible. Thus, we suggest that surface states are the controlling factor of dark-exciton radiative recombination in currently synthesized colloidal CdSe nanocrystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl051027p | DOI Listing |
NPJ Sci Food
January 2025
Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
The encapsulation of curcumin in the emulsions has attracted much attention in functional food development. Herein, the fish oil-loaded silver carp scale gelatin-stabilized emulsions with vitamins were explored for the delivery of curcumin. The curcumin encapsulation had no obvious effect on the formation, storage stability, lipid oxidation, and in vitro droplet digestion behaviors of the emulsions.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of Tromsø - The Arctic University of Norway, N9037 Tromsø, Norway.
In this review we discuss the development of methodology for calculating the temperature dependence and thermodynamic activation parameters for chemical reactions in solution and in enzymes, from computer simulations. We outline how this is done by combining the empirical valence bond method with molecular dynamics free energy simulations. In favorable cases it turns out that such simulations can even capture temperature optima for the catalytic rate.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:
Functional coating materials have found extensive applications across various technological fields. However, the effectiveness of these coating depends critically on the choice of an appropriate medium. In this study, we developed an advanced "molecular glue", a CsgA variant known as CsgA-pro, which can serve as a versatile medium for biotherapy.
View Article and Find Full Text PDFChemosphere
January 2025
Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Otsu, Japan. Electronic address:
Per- and polyfluoroalkyl substances (PFAS), which are considered an international problem due to their persistence in the environment, need to be properly treated in the end. In the destruction method by incineration, basic data are required to quantify the destruction characteristics of the target substance and the temperature-dependent behavior of its by-products. In this study, we conducted incineration tests targeting perfluorooctanoic acid (PFOA) and perfluorooctadecanoic acid (PFOcDA).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:
With recent advancements concerning the optimization of the analytical conditions, it is feasible to analyze polar molecules using supercritical fluid chromatography (SFC). In this study, the applicability of SFC is evaluated for analyzing 5-, 10-, 15-, and 18-mer oligonucleotides, and SFC is then applied to analyze deaminated products, which are side products generated during oligonucleotide synthesis. These side products are difficult to separate from the target oligonucleotide, with the difficulty varying depending on the deamination position and sequences, even when using ion-pair reversed-phase liquid chromatography (IP-RPLC), a common method for oligonucleotide analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!