We present a study of the simultaneous observation of protease reaction and surface diffusion as the enzyme interacts with a model substrate surface. We use micro-fluidic patterning to decorate a bovine serum albumin substrate surface with stripes of adsorbed enzyme in the absence of physical barriers. Spreading of the enzyme from the initial striped region indicates surface diffusion, while removal of the substrate provides a measure of reactivity. Microfluidic patterning provides a means to determine the relative importance of enzyme adsorption, surface diffusion, and reaction on the rate of substrate removal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac050544pDOI Listing

Publication Analysis

Top Keywords

surface diffusion
16
simultaneous observation
8
microfluidic patterning
8
substrate surface
8
surface
7
enzyme
5
substrate
5
observation enzyme
4
enzyme surface
4
diffusion
4

Similar Publications

The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.

View Article and Find Full Text PDF

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Defective boron nitride aerogels by salt template synthesis: A green adsorbent for tetracycline removal.

Environ Res

January 2025

Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China. Electronic address:

Hexagonal boron nitride (h-BN) exhibits unique application potential in water purification due to its large specific surface area, high porosity, and chemical inertness. Designing adsorbents with highly active adsorption sites is one effective method to improve their adsorption capacities. In this study, porous h-BN aerogels containing multiple defect types (DP-BN) were synthesized by using salt templates.

View Article and Find Full Text PDF

Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNiMnO materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!