The potential of high-temperature liquid chromatography (HTLC) was investigated in an on-line combination with a screening system for bioactive compounds against the enzyme cathepsin B. Samples were separated by HTLC and subsequently analyzed by an on-line continuous-flow enzymatic assay. Detection was performed by electrospray ionization mass spectrometry, revealing both the bioactivity and the molecular mass of the bioactive compounds. Compared to conventional reversed-phase liquid chromatography, the amount of methanol necessary for separation could be decreased to only 10%, which improved the compatibility of LC with a biochemical assay. Sufficient preheating of the mobile phase prior to the separation and postcolumn cooling to prevent deactivation of the enzyme, even at column temperatures as high as 208 degrees C, was achieved as indicated by the reliable peak shapes obtained. The sensitivity was comparable with previously described systems operating at ambient temperatures as similar IC50 values were obtained. Exposing the inhibitors to high temperatures did not lead to thermal decomposition. The separation of inhibitors and the subsequent biochemical assay was performed either isothermally at various temperatures or by applying various temperature gradients as well as at various flow rates. The results obtained clearly show the compatibility of HTLC with an enzymatic screening assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac0510282 | DOI Listing |
Kidney360
November 2024
The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, CA, USA 94304.
Background: Hemodialysis may excessively remove valuable solutes. Untargeted metabolomics data from a prior study suggested that ergothioneine was depleted in the plasma of hemodialysis subjects. Ergothioneine is a dietary-derived solute with antioxidant properties.
View Article and Find Full Text PDFKidney360
January 2025
Departments of Medicine, Stanford University and VA Palo Alto HCS, Palo Alto CA USA.
Background: If the GFR falls far enough, uremic symptoms such as anorexia and nausea prompt the initiation of dialysis. Thrice weekly hemodialysis can prevent recurrence of these symptoms even when patients become anuric. To accomplish this it must maintain the plasma levels of the uremic solutes which cause these symptoms lower than they were when dialysis was initiated.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States.
Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis.
View Article and Find Full Text PDFAnal Chem
January 2025
Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.
In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!