The results of experimental analysis of the clinical activity of the antiepileptic drugs' (Phenobarbital, Carbamazepine, Valproic acid, Lamotrigine, Topiramate, Felbamate) widely used in clinic, that was carried out using the standard convulsion test with bicuculline in vivo were compared with characteristics of these drugs' interaction with the key aminoacids of GABA(A) receptor calculated by quantum chemical method (program HyperChem7, semi-empirical method AM1 technique). The correlation between the activity of the drugs in the experiment in vivo and energy of system's interaction of the drugs with aminoacid residue Thr201-Thr202-Gly203- Ala204-Tyr205-Pro206 was found out.

Download full-text PDF

Source

Publication Analysis

Top Keywords

activity antiepileptic
8
[anticonvulsive activity
4
antiepileptic drugs
4
drugs quantum-chemical
4
quantum-chemical modelling
4
modelling interaction
4
interaction gabaa
4
gabaa receptor]
4
receptor] experimental
4
experimental analysis
4

Similar Publications

Time series segmentation for recognition of epileptiform patterns recorded via microelectrode arrays in vitro.

PLoS One

January 2025

Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.

Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.

View Article and Find Full Text PDF

Mechanistic insight of curcumin: a potential pharmacological candidate for epilepsy.

Front Pharmacol

January 2025

Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia.

Recurrent spontaneous seizures with an extended epileptic discharge are the hallmarks of epilepsy. At present, there are several available anti-epileptic drugs (AEDs) in the market. Still no adequate treatment for epilepsy treatment is available.

View Article and Find Full Text PDF

Posterior reversible encephalopathy syndrome (PRES) is a clinical manifestation of various underlying causes, characterized by the combination of clinical and imaging findings associated with the posterior cerebral areas and relating to arterial hypertension and endothelial dysfunction. No association was made so far between PRES and McCune-Albright syndrome (MAS), a rare genetic disorder resulting in fibrous dysplasia. A 33-year-old female with MAS was presented to the emergency department of the 417 Army Share Fund Hospital in Athens (Greece) after seizure activity with two episodes of ocular upward deviation and transient facial palsy, each lasting a few minutes, followed by a postictal phase.

View Article and Find Full Text PDF

Background: Patient engagement (PE) in clinical trials has gained importance yet remains uncommon, particularly in patients with mild cognitive impairment (MCI), a critical precursor to Alzheimer's disease (AD). Cannabidiol (CBD) shows potential in slowing MCI progression due to its neuroprotective and anti-inflammatory properties. In CBD research, PE is underutilized too.

View Article and Find Full Text PDF

Type A GABA (γ-aminobutyric acid) receptors (GABA receptors) mediate most fast inhibitory signalling in the brain and are targets for drugs that treat epilepsy, anxiety, depression and insomnia and for anaesthetics. These receptors comprise a complex array of 19 related subunits, which form pentameric ligand-gated ion channels. The composition and structure of native GABA receptors in the human brain have been inferred from subunit localization in tissue, functional measurements and structural analysis from recombinant expression and in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!