Tn5 Insertion Mutants of Pseudomonas fluorescens Defective in Adhesion to Soil and Seeds.

Appl Environ Microbiol

Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111.

Published: July 1994

Tn5 insertion mutants of a soil isolate, Pseudomonas fluorescens Pf0-1, were selected for decreased ability to adhere to quartz sand in a column assay. Three adhesion-deficient mutants that differed in the location of the Tn5 insertion in the chromosome were isolated and compared with the wild-type strain. One mutant, Pf0-5, was described previously as an adhesion-defective, nonmobile, flagellumless mutant (M. F. DeFlaun, A. S. Tanzer, A. L. McAteer, B. Marshall, and S. B. Levy, Appl. Environ. Microbiol. 56:112-119, 1990). Another insertion mutant, Pf0-10, was also missing flagella and the 34-kDa outer membrane protein that was absent in Pf0-5 but present in the wild-type strain. The third mutant (Pf0-15) had increased amounts of this 34-kDa outer membrane protein and more flagella than the wild-type strain. These mutants also displayed decreased ability to adhere to sterile and natural (live) soil and to a variety of plant seeds. In kinetics studies, the wild-type strain showed an initial rapid binding to seeds followed by a later slow phase of binding. The mutant strains were defective in the initial stages of attachment but did show the later slow binding. The findings indicate that the same mutations that affect binding to sand and soil also affect adhesion to plant seeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC201695PMC
http://dx.doi.org/10.1128/aem.60.7.2637-2642.1994DOI Listing

Publication Analysis

Top Keywords

wild-type strain
16
tn5 insertion
12
insertion mutants
8
pseudomonas fluorescens
8
decreased ability
8
ability adhere
8
34-kda outer
8
outer membrane
8
membrane protein
8
plant seeds
8

Similar Publications

Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) are bioplastics produced by few bacteria as intracellular lipid inclusions under excess carbon source and nutrient-deprived conditions. These polymers are biodegradable and resemble petroleum-based plastics. The rising environmental concerns have increased the demand for PHA, but the low yield in wild-type bacterial strains limits large-scale production.

View Article and Find Full Text PDF

Effect of halo-tolerance gene Hal5 on ethanol tolerance of .

BBA Adv

October 2024

Department of Biochemistry, Panjab University, Chandigarh 160014, India.

Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.

View Article and Find Full Text PDF

Quorum sensing controls numerous processes ranging from the production of virulence factors to biofilm formation. Biofilms, communities of bacteria that are attached to one another and/or a surface, are common in nature, and when they form, they can produce a quorum of bacteria. One model system to study biofilms is the bacterium , which forms a biofilm that promotes the colonization of its symbiotic host.

View Article and Find Full Text PDF

Antileishmanial and Antitrypanosomal Trends of Synthetic Tetralone Derivatives.

Drug Dev Res

February 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.

Leishmaniasis and trypanosomiasis are parasitic diseases that are closely linked to poverty, pose significant local burdens, and are common in tropical and subtropical regions. Various synthetic tetralone derivatives were studied as potential scaffolds for antileishmanial and antitrypanosomal activities. The compounds were studied for their effectiveness against multiple kinetoplastid protozoan pathogens: Leishmania major, Leishmania mexicana, and bloodstream trypomastigotes of Trypanosoma brucei brucei.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!