Influence of packaging and processing conditions on the decontamination of laboratory biomedical waste by steam sterilization.

Appl Environ Microbiol

Laboratoire de santé publique du Québec, 20045 chemin Ste-Marie, Ste-Anne-de-Bellevue, Québec, Canada H9X 3R5.

Published: December 1993

The conditions for optimal steam decontamination of polypropylene bags half loaded with laboratory biomedical waste were studied (276 bags were processed). Controls were single-closed bags without water added or incisions made in the top, standing freely in an autoclave set at 121 degrees C. The average time required to reach 121 degrees C at the load center was 46 min for controls. A significant increase in this time occurred following addition of water to bags without incisions (60 min), with double bagging (60 min), or when using vertical containers (82 min). A significant decrease occurred when bags were slashed (37 min) or processed at 123 degrees C (32 min) or 132 degrees C (19 min). Horizontal containers or addition of water to slashed bags had no significant effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC195906PMC
http://dx.doi.org/10.1128/aem.59.12.4335-4337.1993DOI Listing

Publication Analysis

Top Keywords

laboratory biomedical
8
biomedical waste
8
121 degrees
8
addition water
8
degrees min
8
min
7
bags
6
influence packaging
4
packaging processing
4
processing conditions
4

Similar Publications

Design strategies and biomedical applications of organic NIR-IIb fluorophores.

Chem Commun (Camb)

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.

View Article and Find Full Text PDF

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

Background: Climate change poses a significant risk to kidney health, and countries with lower national wealth are more vulnerable. Yet, citizens from lower-income countries demonstrate less concern for climate change than those from higher-income countries. Education is a key covariate.

View Article and Find Full Text PDF

Objectives: To analyze the CT imaging features of extranodal natural killer/T (NK/T)-cell lymphoma, nasal type (ENKTCL-NT) involving the gastrointestinal tract (GI), and to compare them with those of Crohn's disease (CD) and diffuse large B-cell lymphoma (DLBCL).

Materials And Methods: Data were retrospectively collected from 17 patients diagnosed with GI ENKTCL-NT, 68 patients with CD, and 47 patients with DLBCL. The CT findings of ENKTCL-NT were analyzed and compared with those of CD and DLBCL.

View Article and Find Full Text PDF

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

Eur J Nucl Med Mol Imaging

January 2025

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.

Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.

Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!