A Mo -reducing bacterium (strain 48), which grew on medium supplemented with 200 mM Mo, was isolated from stream water obtained from Chengkau, Malaysia. The chemical properties of strain 48 conform to the characteristics of Enterobacter cloacae. Under anaerobic conditions in the glucose-yeast extract medium containing phosphate ion (2.9 mM) and Mo (10 mM), the bacterium reduced Mo to form molybdenum blue. Approximately 27% of Mo added to the medium was reduced after 28 h of cultivation. The reduction of Mo with glucose as an electron donor was strongly inhibited by iodoacetic acid, sodium fluoride, and sodium cyanide, suggesting an involvement of the glycolytic pathway and electron transport in Mo reduction. NADH and N,N,N',N' -tetramethyl-p-phenylenediamine served as electron donors for Mo reduction. When NADH was used as an electron donor, at first cytochrome b in the cell extract was reduced, and then molybdenum blue was formed. Sodium cyanide strongly inhibited Mo reduction by NADH (5 mM) but not the reduction of cytochrome b in the cell extract, suggesting that the reduced component of the electron transport system after cytochrome b serves as an electron donor for Mo reduction. Both ferric and stannous ions strongly enhanced the activity of Mo reduction by NADH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC202257 | PMC |
http://dx.doi.org/10.1128/aem.59.4.1176-1180.1993 | DOI Listing |
Appl Environ Microbiol
January 2025
Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.
Unlabelled: Incomplete oxidation of glucose by sp. strain CHM43 produces gluconic acid and then 2- or 5-ketogluconic acid. Although 2-keto-D-gluconate (2KG) is a valuable compound, it is sometimes consumed by itself via an unknown metabolic pathway.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan.
Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.
View Article and Find Full Text PDFWiad Lek
January 2025
DEPARTAMENT OF GENERAL NAD HAND SURGERY, STUDENT'S SCIENTIFIC CIRCLE, POMERANIAN MEDICAL UNIVERSITY, SZCZECIN, POLAND.
Carpal tunnel syndrome (CTS) can be treated with several methods, including surgical and non-surgical techniques. Non-surgical methods include wrist splinting, systemic pharmacotherapy, intracarpal injections of steroids hydrodissection, acupuncture, nerve and tendon mobilization, osteopathy, taping, topical application of ointments, laser, ultrasound and shock-wave therapies. These treatments are generally less effective than surgery, and provide only short-lived effect, but it may be quite sufficient for a certain category of patients, particularly those suffering from mild symptoms.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
Hepatic lipotoxicity, resulting from excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent progress, the precise mechanisms remain incompletely understood. Employing excessive exposure to palmitate in hepatocytes as our primary experimental model and mice studies, we aimed to uncover the mechanisms behind hepatic lipotoxicity, thereby developing potential treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!