Cellulase induction by beta-glucodisaccharides was investigated by using non-cellulase-induced mycelia of Penicillium purpurogenum P-26, a highly-cellulase-producing fungus. Gentiobiose induced significant amounts of cellulase compared with cellobiose when nojirimycin was added to the induction medium to inhibit extracellular beta-glucosidase activity. Thiogentiobiose (6-S-beta-d-glucopyranosyl-6-thio-d-glucose), a sulfur-containing analog of gentiobiose, was more effective for cellulase induction than gentiobiose even in the absence of nojirimycin. Thiogentiobiose appeared to be a gratuitous inducer since it was not metabolized during cellulase induction. Gentiobiose was formed from cellobiose by the intracellular beta-glucosidase of P. purpurogenum. These findings indicate that gentiobiose is an active inducer of cellulase for this fungus and may possibly be formed by intracellular beta-glucosidase from cellobiose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC195179 | PMC |
http://dx.doi.org/10.1128/aem.58.1.106-110.1992 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
Bgl2p is a major, conservative, constitutive glucanosyltransglycosylase of the yeast cell wall (CW) with amyloid amino acid sequences, strongly non-covalently anchored in CW, but is able to leave it. In the environment, Bgl2p can form fibrils and/or participate in biofilm formation. Despite a long study, the question of how Bgl2p is anchored in CW remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia.
The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.
Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!