Na-Stimulated Transport of l-Methionine in Brevibacterium linens CNRZ 918.

Appl Environ Microbiol

Laboratoire de Microbiologie Laitière, Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, 78350 Jouy-en-Josas, France.

Published: September 1987

The transport of l-methionine by the gram-positive species Brevibacterium linens CNRZ 918 is described. The one transport system (K(m) = 55 muM) found is constitutive for l-methionine, stereospecific, and pH and temperature dependent. Entry of l-methionine into cells is controlled by the internal methionine pool. Competition studies indicate that l-methionine and alpha-aminobutyric acid share a common carrier for their transport. Neither methionine derivatives substituted on the amino or carboxyl groups nor d-methionine was an inhibitor, whereas powerful inhibition was shown by l-cysteine, s-methyl-l-cysteine, dl-selenomethionine and dl-homocysteine. Sodium plays important and varied roles in l-methionine transport by B. linens CNRZ 918: (i) it stimulates transport without affecting the K(m), (ii) it increases the specific activity (on a biomass basis) of the l-methionine transport system when present with methionine in the medium, suggesting a coinduction mechanism. l-Methionine transport requires an exogenous energy source, which may be succinic, lactic, acetic, or pyruvic acid but not glucose or sucrose. The fact that l-methionine transport was stimulated by potassium arsenate and to a lesser extent by potassium fluoride suggests that high-energy phosphorylated intermediates are not involved in the process. Monensin eliminates stimulation by sodium. Gramicidin and carbonyl cyanide-m-chlorophenylhydrazone act in the presence or absence of Na. N-Ethylmaleimide, p-chloromercurobenzoate, valinomycin, sodium azide, and potassium cyanide have no or only a partial inhibitory effect. These results tend to indicate that the proton motive force reinforced by the Na gradient is involved in the mechanism of energy coupling of l-methionine transport by B. linens CNRZ 918. Thus, this transport is partially similar to the well-described systems in gram-negative bacteria, except for the role of sodium, which is very effective in B. linens, a species adapted to the high sodium levels of its niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC204074PMC
http://dx.doi.org/10.1128/aem.53.9.2159-2164.1987DOI Listing

Publication Analysis

Top Keywords

l-methionine transport
20
linens cnrz
16
cnrz 918
16
l-methionine
10
transport
10
transport l-methionine
8
brevibacterium linens
8
918 transport
8
transport system
8
transport linens
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!