Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora.

Appl Environ Microbiol

Department of Microbiology and Institute of Ecology, University of Georgia, Athens, Georgia 30602.

Published: May 1984

Specifically radiolabeled [C-lignin]lignocelluloses and [C-polysaccharide]lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These [C]lignocellulose preparations and synthetic [C]lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components of the lignocelluloses were slowly degraded anaerobically to CO(2) and CH(4). Lignocelluloses derived from herbaceous plants were degraded more rapidly than lignocellulose derived from the hardwood. After 294 days, 16.9% of the lignin component and 30.0% of the polysaccharide component of lignocellulose derived from the grass used (Spartina alterniflora) were degraded to gaseous end products. In contrast, after 246 days, only 1.5% of the lignin component and 4.1% of the polysaccharide component of lignocellulose derived from the hardwood used (Rhizophora mangle) were degraded to gaseous end products. Synthetic [C]lignin was degraded anaerobically faster than the lignin component of the hardwood lignocellulose; after 276 days, 3.7% of the synthetic lignin was degraded to gaseous end products. Contrary to previous reports, these results demonstrate that lignin and lignified plant tissues are biodegradable in the absence of oxygen. Although lignocelluloses are recalcitrant to anaerobic biodegradation, rates of degradation measured in aquatic sediments are significant and have important implications for the biospheric cycling of carbon from these abundant biopolymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC240039PMC
http://dx.doi.org/10.1128/aem.47.5.998-1004.1984DOI Listing

Publication Analysis

Top Keywords

lignocellulose derived
12
lignin component
12
degraded gaseous
12
gaseous products
12
anaerobic biodegradation
8
lignin
8
lignin polysaccharide
8
polysaccharide components
8
synthetic lignin
8
synthetic [c]lignin
8

Similar Publications

Recent advances in valorization of lignocellulosic waste into biochar and its functionalization for the removal of chromium ions.

Int J Biol Macromol

January 2025

Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China; Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, China. Electronic address:

Lignocellulosic waste is a prevalent byproduct of agricultural and forestry activities which is an excellent feedstock for the preparation of biochar. This research area is of interest to the scientific community due to its potential in environmental remediation. In this regard, this review examines the latest advancements in transforming lignocellulosic waste into biochar and explores recent innovations in enhancing its functionality for chromium ion removal.

View Article and Find Full Text PDF

This study focuses on the extraction of phenolic compounds from the fermentation of and . The main goal was to synthesize phenol/chitosan microspheres and PVA films and characterized using FTIR, TGA, DSC, SEM, and mechanical tests to evaluate their physical, chemical, and mechanical properties for antimicrobial packaging applications. Homogeneous chitosan microspheres loaded with lignin-derived phenols were obtained, showing controlled release of antimicrobial compounds.

View Article and Find Full Text PDF

Conventional food packaging is creating a significant cause of environmental hazards, posing challenges in disposal and recycling. Lignocellulose fibers possess remarkable biodegradable properties and can be modified or blended with other polymers. Thus, using lignocellulose biocomposite films derived from barley, a renewable source can mitigate and potentially transform into sustainable, innovative packaging material in the food sectors.

View Article and Find Full Text PDF

Nanocellulose extraction from date palm waste using 1-butyl-3-methylimidazolium hydrogen sulphate.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO BOX 15551, Al Ain, United Arab Emirates. Electronic address:

This study provides insights into nanocellulose production using 1-butyl-3-methylimidazolium hydrogen sulphate ([Bmim]HSO) as a green solvent, utilizing cellulose derived from date palm waste. Critical hydrolysis parameters were optimized through analysis of variance and response surface methodology. The predicted nanocellulose yield (Y) followed a quadric equation represented by Y=55.

View Article and Find Full Text PDF

Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!