A sensitive method using high-performance liquid chromatography coupled to a mass spectrometer with electrospray ionization source (HPLC/ESI-MS) was developed for detection of ecdysteroids in biological samples. We report here for the first time that ecdysteroids can be classified into three groups based on ESI full-scan mass spectra: group 1 (ecdysone (E), 2-deoxyecdysone (2dE), 2,22-dideoxyecdysone (3beta5beta-KT), and 3alpha5alpha[H]-dihydroxycholest-7-en-6-one (3alpha5alpha-KD)), in which loss of one molecule of water from the protonated molecular ion ([M+H](+)) represents the dominant ion; group 2 (20-hydroxyecdysone (20E), makisterone A (MakA), 3beta5beta-KD, and 3beta5alpha-KD), in which [M+H](+) is a major ion but some water loss is observed; and group 3 (muristerone A (MurA) and ponasterone A (PonA)), in which [M+H](+) is the dominant ion with no water loss observed. Based on the analytical procedure in combination with structural information from the group classification and with the application of source-induced dissociation, we identified free ecdysteroids in biological samples: 20,26-dihydroxyecdysone and ecdysonic acid in the larval hemolymph, and the progressive metabolism of 26-hydroxyecdysone (26E) to 3alpha-26E from day-1 to day-3 embryos of the tobacco hornworm Manduca sexta.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.2294DOI Listing

Publication Analysis

Top Keywords

biological samples
12
ecdysteroids biological
8
dominant ion
8
ion water
8
water loss
8
loss observed
8
profiling ecdysteroids
4
ecdysteroids complex
4
complex biological
4
samples liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!