A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR. | LitMetric

Artificial neural networks (ANNs) have been successfully trained to model and predict the acidity constants (pK(a)) of 128 various phenols with diverse chemical structures using a quantitative structure-activity relationship. An ANN with 6-14-1 architecture was generated using six molecular descriptors that appear in the multi-parameter linear regression (MLR) model. The polarizability term (pi (I)), most positive charge of acidic hydrogen atom (q+), molecular weight (MW), most negative charge of the phenolic oxygen atom (q-), the hydrogen-bond accepting ability (epsilon(B)) and partial-charge weighted topological electronic (PCWTE) descriptors are inputs and its output is pK(a). It was found that a properly selected and trained neural network with 106 phenols could represent the dependence of the acidity constant on molecular descriptors fairly well. For evaluation of the predictive power of the ANN, an optimized network was used to predict the pK(a)s of 22 compounds in the prediction set, which were not used in the optimization procedure. A squared correlation coefficient (R2) and root mean square error (RMSE) of 0.8950 and 0.5621 for the prediction set by the MLR model should be compared with the values of 0.99996 and 0.0114 by the ANN model. These improvements are due to the fact that the pK(a) of phenols shows non-linear correlations with the molecular descriptors. [Figure: see text].

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-005-0050-6DOI Listing

Publication Analysis

Top Keywords

molecular descriptors
12
artificial neural
8
neural networks
8
mlr model
8
prediction set
8
application artificial
4
networks predicting
4
predicting aqueous
4
aqueous acidity
4
phenols
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!