To investigate the role of histamine in airway remodeling, 50 healthy guinea pigs were divided into 5 groups: control group: nebulized inhalation of distilled water for 8 weeks; asthma model group: nebulized inhalation of ovalbumin (OVA) for 8 weeks after sensitization; continued asthma model group: nebulized inhalation of OVA for 14 weeks after sensitization; histamine group: nebulized inhalation of OVA for 14 weeks after sensitization and histamine was added in the last 6 weeks; antagonist group: nebulized inhalation of OVA for 14 weeks after sensitization and histamine receptor antagonists were added in the last 6 weeks. For each group, the concentration of histamine, sodium ion (Na(+)), chlorine ion (Cl(-)), arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), pH, actual bicarbonate (AB), standard bicarbonate (SB) in serum, and thickness of airway mucosa, base membrane and smooth muscle were measured and compared with each other. The results showed that: (1) the concentration of histamine in serum and the thickness of airway increased, the following order was, the control group, the asthma model group, the continued asthma model group and histamine group (P<0.01); and the concentration of histamine in serum and the thickness of airway of antagonist group was lower than that of the continued asthma model group (P<0.05, 0.01). (2) PaO2 of the asthma model group was lower than that of the normal control group (P<0.01); PaO2, pH, AB, SB decreased, the following order was, the asthma model group, the continued asthma model group and the histamine group (P<0.01); and PaO2, pH, AB, SB of the antagonist group was higher than that of the continued asthma model group (P<0.01); but for PaCO2, the order was converse (P<0.01); For the concentration of Na(+) and Cl(-) in serum, there was no difference among these groups. It is concluded that: (1) Histamine is one of the mediators in the airway remodeling of asthma. (2) Histamine receptor antagonists may play a role in preventing and treating airway remodeling. (3) There is a negative correlation between the PaO2, pH and the wall thickness of the airway (P<0.01), while a positive correlation between the PaCO2, anion gap (AG) and the wall thickness of the airway (P<0.01).
Download full-text PDF |
Source |
---|
Infect Prev Pract
March 2025
Cardio Thoracic and Vascular Surgery, PGIMER, Chandigarh, India.
Background: Infection prevention and control (IPC) practices by critical care nurses are crucial in preventing ventilator-associated pneumonia (VAP) and central-line-associated bloodstream infection (CLABSI).
Aim: To implement an integrative approach to developing a set of IPC practices and disseminating information on the IPC practices through an educational multimedia tool to improve compliance with the practices.
Methods: This participatory interventional before-after study was conducted in a single tertiary care centre's cardiac surgical intensive care unit (ICU) from May 2022 to March 2023.
Respir Res
January 2025
Department of Pulmonary, Allergy, and Critical Care Medicine, Chungnam National University School of Medicine, Daejeon, South Korea.
Background: Choosing effective devices (inhaled corticosteroid [ICS]-long-acting β2 agonist [LABA] combination inhalers) as maintenance treatment is critical for managing patients with asthma. We aimed to compare ICS/LABA combination efficacy, safety, and adherence across inhaler types and components in patients newly diagnosed with asthma.
Methods: Utilizing South Korea's National Health Insurance Service data, we conducted a population-based cohort study involving patients aged 18-80 years, newly diagnosed with asthma who received ICS/LABA combination therapy between January 2016 and December 2020.
Zhongguo Zhong Yao Za Zhi
December 2024
Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Application and Transformation of Traditional Chinese Medicine in Prevention and Treatment of Major Pulmonary Diseases Hefei 230031, China Key Laboratory of Xin'an Medicine, Ministry of Education Hefei 230038, China.
This study aimed to investigate the mechanism by which Shegan Mahuang Decoction(SGMH) and its bitter Chinese herbs(BCHs) regulated the lung-gut axis through the bitter taste receptor 14(TAS2R14)/secretory immunoglobulin A(SIgA)/thymic stromal lymphopoietin(TSLP) to intervene in the epithelial cell barrier of cold asthma rats. Fifty SD rats were randomly divided into the following five groups: normal group, model group, dexamethasone group, SGMH group, and BCHs group. A 10% ovalbumin(OVA) solution was used to sensitize the rats via subcutaneous injection on both sides of the abdomen and groin, combined with 2% OVA atomization and cold(2-4 ℃) stimulation to induce a cold asthma model in rats.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, China. Electronic address:
Thyroid hormone (TH) and it most active form triiodothyronine (T3) are crucial in promoting mitochondrial biogenesis and maintaining cellular homeostasis during the stress response, but their role in paraquat (PQ)-induced pulmonary fibrosis isunclear. The aim of this study was to examine whether there was a deficiency of TH in mouse lung tissue after PQ administration, and to explore the effect of T3, and potential mechanisms of action, in alleviation of PQ-induced pulmonary fibrosis. We found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in the lungs of patients with pulmonary fibrosis than in controls.
View Article and Find Full Text PDFSurgery
January 2025
Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:
Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!