AI Article Synopsis

  • The PDGF family is crucial for cell processes like growth and movement, but their specific roles in ovarian function and tumor development are not well understood.
  • Microarray studies on follitropin receptor knockout mice indicated significant changes in PDGF ligands and receptors, suggesting that FSH signaling may impact these factors and their link to tumor formation.
  • Research showed that the absence of FSH-R altered levels of PDGF-C and PDGFR-alpha, indicating FSH's regulatory role and how disruptions could contribute to ovarian tumor risks in aging mice.

Article Abstract

Although PDGF family members play a vital role in cell proliferation, motility and chemotaxis via activation of structurally similar alpha- and beta-receptors, little is known of their function in ovarian regulation and induction of tumorigenesis. Microarray analyses of ovaries from young follitropin receptor knockout (FORKO) mice that are prone to late ovarian tumors upon aging have revealed significant imbalances in PDGF ligands and receptors. We hypothesized that FSH/FSH-R signaling may exert effects partly by regulation of PDGF the family. To further understand their implications for ovarian tumorigenesis, we studied FORKO ovaries and hormonal regulation of the PDGF family members in normal mice, by using RT-PCR, Q-PCR, immunohistochemistry and western blotting. While PDGF-C and PDGFR-alpha increased, PDGFR-beta mRNA and protein decreased significantly in absence of FSH-R signaling. In the normal ovary, PDGFR-alpha was not affected by gonadotropin (eCG) stimulation but PDGF-C and PDGFR-beta decreased. Administration of estradiol decreased PDGF and their receptors. To further probe the differential regulation of PDGF family members by eCG and estradiol, we co-administered eCG with estrogen antagonist, ICI 182780. Increase in PDGFR-alpha in the absence of estradiol suggests direct effects of FSH signaling. During the estrous cycle in mice PDGF-C, PDGF-D and PDGFR-alpha mRNA levels were higher at the proestrous. By IHC, we report for the first time the localization of PDGF-C, PDGFR-alpha and PDGFR-beta protein in mouse ovarian compartments including the surface epithelium that is also altered in mutants. Immunostaining of PDGFRs increased as the follicle developed to preantral stage and declined thereafter. Thus, FSH modulates PDGF family members, partly via E2, suggesting that loss of FSH-R signaling causes an imbalance of PDGF family members predisposing the abnormal ovarian follicular environment for inducing tumorigenesis in aging FORKO mice.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgi305DOI Listing

Publication Analysis

Top Keywords

pdgf family
24
family members
20
regulation pdgf
12
pdgf
9
pdgf ligands
8
ligands receptors
8
follitropin receptor
8
receptor knockout
8
knockout forko
8
forko mice
8

Similar Publications

This split-mouth trial investigated the efficacy of treating bilateral gingival recessions with either a xenogeneic cross-linked collagen matrix (CCM), or recombinant human platelet derived growth factor (rhPDGF-BB) with a bone allograft (AG). Ten patients were treated with the coronally advanced flap (CAF), either with a CCM, or rhPDGF-BB + AG. The primary outcome was percentage of mean root coverage (mRC) at 12 months.

View Article and Find Full Text PDF

Non-Small Cell Lung Cancer (NSCLC) is a formidable global health challenge, responsible for the majority of cancer-related deaths worldwide. The Platelet-Derived Growth Factor Receptor (PDGFR) has emerged as a promising therapeutic target in NSCLC, given its crucial involvement in cell growth, proliferation, angiogenesis, and tumor progression. Among PDGFR inhibitors, avapritinib has garnered attention due to its selective activity against mutant forms of PDGFR, particularly PDGFRA D842V and KIT exon 17 D816V, linked to resistance against conventional tyrosine kinase inhibitors.

View Article and Find Full Text PDF

Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!