In the present work, we used a unique cortical/striatal/subventricular zone organotypic model in order to analyze the role of resident microglia in oxygen/glucose deprivation and to check the presence and modulation of several P2 receptors in the cortex. Immunofluorescence with the microglial marker OX42 and pharmacological experiments with indomethacin indicate that activation and recruitment of microglia after the insult is linked to cellular loss, mainly in the cortex. The confocal analysis with OX42 shows that, among the P2 receptors tested, P2X4, and P2X7 are expressed on microglia, while P2X1 and P2Y(1-2-12), although present in the slices, did not co-localize, whereas P2X6 is not detected. The upregulation of P2X4 and P2X7 on microglia and the toxic effect that different P2 agonists exert on cortical slices during oxygen/glucose deprivation indicate that a purinergic mechanism is related to the microglia activity; the protective effect of the P2 antagonist TNP-ATP is also described. In order to better understand the relationship between P2 receptors and OGD-activated microglia, we induced oxygen/glucose deprivation in co-cultures of organotypic slices and N9 microglia cell line. The presence of the N9 (which expresses P2X4 and P2X7 protein) in the cultures increases the damage in the cortex by 40% and the use of P2 antagonist PPADS reduced the cell damage due to the N9 activation. Our results show that microglia recruitment after a metabolic impairment is associated with cellular loss and that P2X4 and P2X7, are involved in microglia activity. The neuroprotective action exerted by TNP-ATP and PPADS and the possible use of purinergic antagonist in the pharmacological treatment of oxygen/glucose deprivation is also addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2005.04.038DOI Listing

Publication Analysis

Top Keywords

oxygen/glucose deprivation
16
p2x4 p2x7
16
microglia
10
cellular loss
8
microglia activity
8
oxygen/glucose
5
microglia response
4
response receptor
4
receptor participation
4
participation oxygen/glucose
4

Similar Publications

Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2.

Free Radic Biol Med

January 2025

Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China. Electronic address:

Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway.

Chin J Nat Med

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:

The activation of the sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species (ROS) levels. Clinical trials have demonstrated that Zhongfeng Xingnao Liquid (ZFXN) ameliorates post-stroke cognitive impairment (PSCI). However, the underlying mechanism, particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway, remains unclear.

View Article and Find Full Text PDF

Ginkgolide B binds to GPX4 and FSP1 to alleviate cerebral ischemia/reperfusion injury in rats.

Toxicol Appl Pharmacol

January 2025

Department of Neurology, Yantaishan Hospital, Yantai, Shandong, China. Electronic address:

Ischemia/reperfusion (I/R) injury can increase the anomalous permeability of the blood-brain barrier and the risk of hemorrhagic conversion. Ginkgolide B (Gin B) has been recognized for its neuroprotective properties in stroke treatment. This study aimed to analyze the association of Gin B with GPX4 and FSP1 in cerebral I/R injury treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!