In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2005.08.013DOI Listing

Publication Analysis

Top Keywords

boosted artmap
28
fuzzy artmap
24
risk minimization
20
structural risk
16
artmap
12
boosted
9
fuzzy
9
modifications fuzzy
8
neural network
8
improve generalization
8

Similar Publications

A new architecture called muARTMAP is proposed to impact a category proliferation problem present in Fuzzy ARTMAP. Under a probabilistic setting, it seeks a partition of the input space that optimizes the mutual information with the output space, but allowing some training error, thus avoiding overfitting. It implements an inter-ART reset mechanism that permits handling exceptions correctly, thus using few categories, especially in high dimensionality problems.

View Article and Find Full Text PDF

In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data.

View Article and Find Full Text PDF

Category regions as new geometrical concepts in Fuzzy-ART and Fuzzy-ARTMAP.

Neural Netw

December 2002

School of Electrical Engineering and Computer Science, University of Central Florida, Orlando 32816, USA.

In this paper we introduce novel geometric concepts, namely category regions, in the original framework of Fuzzy-ART (FA) and Fuzzy-ARTMAP (FAM). The definitions of these regions are based on geometric interpretations of the vigilance test and the F2 layer competition of committed nodes with uncommitted ones, that we call commitment test. It turns out that not only these regions have the same geometrical shape (polytope structure), but they also share a lot of common and interesting properties that are demonstrated in this paper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!