Hyperglycemia increased brain ischemia injury through extracellular signal-regulated protein Kinase.

Pathol Res Pract

Institute of Immunopathology, School of Life Science & Technology, Xi'an Jiaotong University, Xi'an 710061, China.

Published: August 2006

This study was to examine the alterations in the phosphorylation of mitogen-activated protein kinase (MAPK) family in transient brain ischemia under a hyperglycemia and to highlight the molecular mechanisms by which hyperglycemia exacerbates brain damage resulting from stroke. Extracellular signal-regulated protein kinase (ERK) expression was studied in rats subjected to global brain ischemia with pre-ischemic normoglycemic (CIN) and hyperglycemic (CIH) conditions. In another group, the hyperglycemic ischemic rats were pretreated with ERK inhibitor U0126 (U0126). Increased phospho-ERK1/2 immunoreactive neurons in the cingulate cortex and hippocampal CA3 were detected in CIN after ischemia and reperfusion. The numbers of phospho-ERK1/2-positive neurons were further increased significantly in CIH compared to the CIN. Pretreatment with U0126 in CIH rats significantly decreased ERK1/2 immunoreactive cells. Western blot analyses confirmed that phospho-ERK1/2 increased significantly after 30 min ischemia and reperfusion compared to non-ischemic controls in both the CIN and CIH groups. The increase of phospho-ERK1/2 was more prominent in the CIH than in the CIN group after 3 and 6h of reperfusion. Treatment with U0126 significantly reduced phospho-ERK1/2 in the CIH group. The findings presented here suggest that ERK1/2 may play a role in mediating neuronal cells death under hyperglycemic condition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2005.10.002DOI Listing

Publication Analysis

Top Keywords

brain ischemia
12
protein kinase
12
extracellular signal-regulated
8
signal-regulated protein
8
ischemia reperfusion
8
cih
6
ischemia
5
cin
5
hyperglycemia increased
4
brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!