A reliable procedure is proposed for assigning the electronic structures for large biologically-relevant systems, where the size of the model confines one to the use of density functional theory (DFT) methods, and where the risk of over-interpreting DFT-derived molecular orbitals and spin densities still exists. The proposed approach focuses on the use of the only DFT-derived parameter that is unanimously recognized to be reliable: the geometry. We examine DFT-derived O-O bond lengths in formally ferrous-dioxygen models, and compare them to bond lengths in free, non metal-bound, dioxygen, superoxide and peroxide moieties. Likewise, we compare the N-O bond lengths within ferrous-nitrosyl {FeNO}7 models, with the same parameter in free NO+, NO*, and HNO species. This allows a calibrated, straightforward way of assigning the electronic structure in systems where electromerism makes detailed single-reference molecular orbital analysis unreliable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2005.10.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!