Active deep-sea hydrothermal vents are areas of intense mixing and severe thermal and chemical gradients, fostering a biotope rich in novel hyperthermophilic microorganisms and metabolic pathways. The goal of this study was to identify the earliest archaeal colonizers of nascent hydrothermal chimneys, organisms that may be previously uncharacterized as they are quickly replaced by a more stable climax community. During expeditions in 2001 and 2002 to the hydrothermal vents of the East Pacific Rise (EPR) (9 degrees 50'N, 104 degrees 17'W), we removed actively venting chimneys and in their place deployed mineral chambers and sampling units that promoted the growth of new, natural hydrothermal chimneys and allowed their collection within hours of formation. These samples were compared with those collected from established hydrothermal chimneys from EPR and Guaymas Basin vent sites. Using molecular and phylogenetic analysis of the 16S rDNA, we show here that at high temperatures, early colonization of a natural chimney is dominated by members of the archaeal genus Ignicoccus and its symbiont, Nanoarchaeum. We have identified 19 unique sequences closely related to the nanoarchaeal group, and five archaeal sequences that group closely with Ignicoccus. These organisms were found to colonize a natural, high temperature protochimney and vent-like mineral assemblages deployed over high temperature outflows within 92 h. When compared phylogenetically, several of these colonizing organisms form a unique clade independent of those found in mature chimneys and low-temperature mineral chamber samples. As a model ecosystem, the identification of pioneering consortia in deep-sea hydrothermal vents may help advance the understanding of how early microbial life forms gained a foothold in hydrothermal systems on early Earth and potentially on other planetary bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-2920.2005.00874.x | DOI Listing |
Sci Rep
January 2025
INES Integrated Environmental Solutions UG, Wilhelmshaven, Germany.
Hydrothermal vents are ecosystems inhabited by a highly specialized fauna. To date, more than 30 gastropod species have been recorded from vent fields along the Central and Southeast Indian Ridge and all of them are assumed to be vent-endemic. During the INDEX project, 701 representatives of the genus Anatoma (Mollusca: Vetigastropoda) were sampled from six abyssal hydrothermal vent fields.
View Article and Find Full Text PDFISME J
January 2025
Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, 13288, Marseille Cedex 9, France.
The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Organisms occupy diverse ecological niches worldwide, each with characteristics finely evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as one of Earth's extreme environments, may have adapted to withstand severe conditions, including elevated temperatures and pressure. This study compares the exoskeletons of two vent crustaceans (bythograeid crab sp.
View Article and Find Full Text PDFMar Drugs
December 2024
Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France.
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown.
View Article and Find Full Text PDFBiodivers Data J
December 2024
Departamento de Artes, Educación y Humanidades, Centro Universitario de la Costa, Universidad de Guadalajara, Av. Universidad de Guadalajara 203, CP 48280, Puerto Vallarta, Jalisco, Mexico Departamento de Artes, Educación y Humanidades, Centro Universitario de la Costa, Universidad de Guadalajara, Av. Universidad de Guadalajara 203, CP 48280 Puerto Vallarta, Jalisco Mexico.
Background: Cumaceans mostly inhabit marine environments, where they play a crucial role in marine food webs and actively participate in the transfer between benthic and pelagic systems. Scientific interest in these crustaceans has been increasing, but is limited to certain geographic areas, which do not include extreme environments such as hydrothermal vents.
New Information: Therefore, this study aimed to report the distribution of cumaceans in shallow-water hydrothermal vents at Banderas Bay and to identify the specimens present.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!