At Hot Creek in California, geothermally derived arsenite is rapidly oxidized to arsenate. This process is mediated by microorganisms colonizing the surfaces of submerged aquatic macrophytes in the creek. Here we describe a multifaceted approach to characterizing this biofilm community and its activity. Molecular techniques were used to describe the community as a function of 16S-rRNA gene diversity. Cultivation-based strategies were used to enumerate and isolate three novel arsenite oxidizers, strains YED1-18, YED6-4 and YED6-21. All three strains are beta-Proteobacteria, of the genus Hydrogenophaga. Because these strains were isolated from the highest (i.e. million-fold) dilutions of disrupted biofilm suspensions, they represent the most numerically significant arsenite oxidizers recovered from this community. One clone (Hot Creek Clone 44) obtained from an inventory of the 16S rDNA sequence diversity present in the biofilm was found to be 99.6% identical to the 16S rDNA sequence of the isolate YED6-21. On the basis of most probable number (MPN) analyses, arsenite-oxidizing bacteria were found to account for 6-56% of the cultivated members of the community. Using MPN values, we could estimate an upper bound on the value of V(max) for the community of 1 x 10(-9)micromole arsenite min(-1) cell(-1). This estimate represents the first normalization of arsenite oxidation rates to MPN cell densities for a microbial community in a field incubation experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2005.00862.xDOI Listing

Publication Analysis

Top Keywords

hot creek
12
arsenite oxidizers
8
16s rdna
8
rdna sequence
8
community
7
arsenite
6
community cultivation
4
cultivation analysis
4
analysis arsenite
4
arsenite oxidizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!