Kernel energy method: application to DNA.

Biochemistry

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375-5341, USA.

Published: December 2005

The kernel energy method (KEM) has been used in three recent papers (1-3) to calculate the quantum mechanical ab inito molecular energy of peptides and the protein insulin. It was found to have good accuracy. The computational difficulty of representing a molecule increases only modestly with the number of atoms. The calculations are simplified by adopting the approximation that a full biological molecule can be represented by smaller "kernels" of atoms. In this paper, the accuracy of the KEM is tested in the application to DNA, whose basic kernels, chemical bonding, and overall molecular structure are quite different from peptides and proteins. The basic kernel in the case of peptides and proteins is an amino acid. The basic kernel in the case of DNA is a nucleotide consisting of a phosphate-sugar-base. The molecular energy is calculated for all three basic types of DNA, i.e., B, A, and Z configurations of DNA. The results give an accuracy that is comparable to that achieved with peptides and proteins. Thus, the KEM is found to be applicable to major types of biological molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi051655lDOI Listing

Publication Analysis

Top Keywords

peptides proteins
12
kernel energy
8
energy method
8
application dna
8
molecular energy
8
basic kernel
8
kernel case
8
dna
5
kernel
4
method application
4

Similar Publications

Identification and Characterization of a Protease Producing Strain From Tannery Waste for Efficient Dehairing of Goat Skin.

Biomed Res Int

January 2025

Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.

Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.

View Article and Find Full Text PDF

Chemical proteomic profiling of lysine crotonylation using minimalist bioorthogonal probes in mammalian cells.

Chem Sci

January 2025

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Protein lysine crotonylation has been found to be closely related to the occurrence and development of various diseases. Currently, site identification of crotonylation is mainly dependent on antibody enrichment; however, due to the cost, heterogeneity, and specificity of antibodies, it is desired to develop an alternative chemical tool to detect crotonylation. Herein, we report an alkynyl-functionalized bioorthogonal chemical probe, Cr-alkyne, for the detection and identification of protein lysine crotonylation in mammalian cells.

View Article and Find Full Text PDF

Extracellular vesicles released by the protozoan parasite display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan towards the development of a vaccine adjuvant. As a proof of concept, we expressed in a codon-optimized SARS-CoV-2 Spike protein fused to the secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal.

View Article and Find Full Text PDF

The eastern or Tasmanian bettong ( ) is one of four extant bettong species and is listed as 'Near Threatened' by the IUCN. We sequenced short read data on the 10x system to generate a reference genome 3.46Gb in size and contig N50 of 87.

View Article and Find Full Text PDF

Background: Improved diagnostic tools are needed for detecting active filarial infections in humans. Tests are available that detect adult circulating filarial antigen, but there are no sensitive and specific biomarker tests for brugian filariasis or loiasis. Here we explored whether extracellular vesicles released by filarial parasites contain diagnostic biomarker candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!