We have used the 5' flanking sequence of the myelin basic protein gene known to include the core promoter and a strong oligodendrocyte (ODC)-specific enhancer to target expression of the well-studied model antigen ovalbumin (OVA) to ODC in transgenic mice. OVA protein was detected in a tissue- and cell-specific manner in these "ODC-OVA" mice. Without immunization, CD4 T cells and B cells remained ignorant of the neo-self antigen expressed in the central nervous system (CNS), as indicated by unimpaired development and lack of activation of OVA/IA(b)-specific TCR transgenic T cells in these mice, and the ability to mount normal OVA-specific recall and antibody responses. Upon immunization with OVA in complete Freund's adjuvant, about half of the transgenic mice developed neurological symptoms characteristic of experimental autoimmune encephalomyelitis (EAE). Mononuclear infiltrates in the brain and spinal cord contained both macrophages and T cells, similar to classical models of EAE induced by immunization with CNS antigens in adjuvant. The wealth of immunological reagents available to study and manipulate the OVA-specific response should make this new model useful for the investigation of components and mechanisms involved in CNS-specific autoimmunity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200535211DOI Listing

Publication Analysis

Top Keywords

transgenic mice
12
experimental autoimmune
8
autoimmune encephalomyelitis
8
mice
5
induction experimental
4
transgenic
4
encephalomyelitis transgenic
4
mice expressing
4
expressing ovalbumin
4
ovalbumin oligodendrocytes
4

Similar Publications

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.

View Article and Find Full Text PDF

Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes.

View Article and Find Full Text PDF

The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.

View Article and Find Full Text PDF

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!