The success of spin trapping techniques in vivo hinges on whether spin traps with high trapping efficiency and biocompatibility can be developed. Currently, two iron chelates based on the dithiocarbamate structure (hydrophilic ferro-di(N-methyl-D-glucamine-dithiocarbamate, or Fe(II)-MGD, and lipophilic ferro-di(diethyldithiocarbamate), or Fe(II)-DETC), are used for spin trapping of nitric oxide (NO) in biologic systems. However, detection efficiency is hampered by a complex redox chemistry for Fe(II)-MGD and by the insolubility of Fe(II)-DETC in water. To circumvent these problems, two new spin trap formulations based on Fe(II)-DETC were developed: a lipid-based carrier system stabilized by lecithin and inclusion complexes in hydroxypropyl-beta-cyclodextrin. The capability of these two systems to trap NO was determined and compared to the standard spin traps in vitro (in the presence of an NO donor) and in vivo (after induction of septic shock in mice). The sensitivity of the detection of NO was significantly increased (by a factor of 4) using the lipid-based carrier systems or inclusion complexes compared to the standard spin trap agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.20746DOI Listing

Publication Analysis

Top Keywords

lipid-based carrier
12
inclusion complexes
12
carrier systems
8
systems inclusion
8
nitric oxide
8
spin trapping
8
spin traps
8
spin trap
8
compared standard
8
standard spin
8

Similar Publications

The application of mesoporous silica nanoparticles (MSN) as a drug carrier system got immense attention in the past few years due to their exceptional high drug loading efficiency. However, the process of drug loading is quite challenging compared to other lipid-based drug delivery systems. Hence, the MSNs using different catalysts were synthesized, and their mesoporous material characteristic was confirmed by the type IV adsorption-desorption isotherm using BET analyzer.

View Article and Find Full Text PDF

Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation.

View Article and Find Full Text PDF

The current study aims to establish a novel ultra-deformable vesicular system to enhance the drug penetration across the skin by preparing the ketoconazole-loaded menthosomes. It was achieved through regular thin-film evaporation & hydration techniques. To examine the effect of formulation parameters on menthosome characteristics, a 2 full factorial design was used using Design-Expert® software.

View Article and Find Full Text PDF

mRNA-based vaccines against the COVID-19 pandemic have propelled the use of nucleic acids for drug delivery. Conventional lipid-based carriers, such as liposomes and nanolipogels, effectively encapsulate and deliver RNA but are hindered by issues such as premature burst release and immunogenicity. To address these challenges, cell membrane-coated nanoparticles offer a promising alternative.

View Article and Find Full Text PDF

Cationic liposomes as carriers of natural compounds from plant extract.

Biophys Chem

December 2024

Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.

Lipid-based nanocarriers provide versatile platforms for the encapsulation and delivery of many different bioactive compounds to improve the solubility, stability and therapeutic efficacy of bioactive phyto-compounds. In this study, liposomes were used to load leaf extract of Coffea Arabica, which is known to be rich beneficial substances such as alkaloids, flavonoids, etc. The aim of this work is to optimize the valorization of agricultural wastes containing natural antioxidants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!