We describe the assembly of a cationic lipid-nucleic acid nanoparticle from a liquid monophase containing water and a water miscible organic solvent where both lipid and DNA components are separately soluble prior to their combination. Upon removal of the organic solvent, stable and homogenously sized (70-100 nm) lipid-nucleic acid nanoparticles (Genospheres) were formed. The low accessibility (<15%) of the nanoparticle-encapsulated DNA to a DNA intercalating dye indicated well-protected nucleic acids and high DNA incorporation efficiencies. It was demonstrated that Genospheres could be stably stored under a variety of conditions including a lyophilized state where no appreciable increase in particle size or DNA accessibility was observed following reconstitution. Finally, Genospheres were made target-specific by insertion of an antibody-lipopolymer (anti-HER2 scFv (F5)-PEG-DSPE) conjugate into the particle. The target specificity (>100-fold) in HER2 overexpressing SK-BR-3 breast cancer cells was dependent on the degree of PEGylation, where the incorporation of high amounts of PEG-lipid on the particle surface (up to 5 mol%) had only a minor effect on the transfection activity of the targeted Genospheres. In summary, this work describes a novel, readily scalable method for preparing highly stable immunotargeted nucleic acid delivery vehicles capable of achieving a high degree of specific transfection activity.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.gt.3302699DOI Listing

Publication Analysis

Top Keywords

lipid-nucleic acid
8
organic solvent
8
transfection activity
8
genospheres self-assembling
4
self-assembling nucleic
4
nucleic acid-lipid
4
acid-lipid nanoparticles
4
nanoparticles suitable
4
suitable targeted
4
targeted gene
4

Similar Publications

In severely phosphorus (P)-impoverished environments, plants have evolved to use P very efficiently. Yet, it is unclear how P allocation in leaves contributes to their photosynthetic P-use efficiency (PPUE) and position along the leaf economics spectrum (LES). We address this question in 10 species of Banksia and Hakea, two highly P-efficient Proteaceae genera.

View Article and Find Full Text PDF

Cross talk between genetics and biochemistry in the pathogenesis of hepatocellular carcinoma.

Hepatol Forum

July 2024

Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye.

The liver is a crucial organ in the regulation of metabolism, signaling, and homeostasis. Using recent advanced sequencing technologies, several mutations of genes in major metabolic and signaling pathways have been discovered in the pathogenesis of hepatocellular carcinoma (HCC). These gene signatures alter expression and ultimately affect biochemical pathways by modifying enzyme/protein levels, resulting in numerous clinical outcomes related to HCC.

View Article and Find Full Text PDF

: Nucleic acid constructs are commonly used for vaccination, immune stimulation, and gene therapy, but their use in cancer still remains limited. One of the reasons is that systemic delivery to tumor-associated antigen-presenting cells (dendritic cells and macrophages) is often inefficient, while off-target nucleic acid-sensing immune pathways can stimulate systemic immune responses. Conversely, certain carbohydrate nanoparticles with small molecule payloads have been shown to target these cells efficiently in the tumor microenvironment.

View Article and Find Full Text PDF

β-Catenin Activation Reprograms Ammonia Metabolism to Promote Senescence Resistance in Hepatocellular Carcinoma.

Cancer Res

May 2024

State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Unlabelled: Hepatocellular carcinoma (HCC) is a typical tumor that undergoes metabolic reprogramming, differing from normal liver tissue in glucose, lipid, nucleic acid, and amino acid metabolism. Although ammonia is a toxic metabolic by-product, it has also been recently recognized as a signaling molecule to activate lipid metabolism, and it can be a nitrogen source for biosynthesis to support tumorigenesis. In this study, we revealed that β-catenin activation increases ammonia production in HCC mainly by stimulating glutaminolysis.

View Article and Find Full Text PDF

Lipid nanoparticles own a remarkable potential in nanomedicine, only partially disclosed. While the clinical use of liposomes and cationic lipid-nucleic acid complexes is well-established, liquid lipid nanoparticles (nanoemulsions), solid lipid nanoparticles, and nanostructured lipid carriers have even greater possibilities. However, they face obstacles in being used in clinics due to a lack of understanding about the molecular mechanisms controlling their drug loading and release, interactions with the biological environment (such as the protein corona), and shelf-life stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!