A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. | LitMetric

AI Article Synopsis

  • Lens regeneration in adult newts demonstrates the process of transdifferentiation, where iris cells can become lens cells after the original lens is removed.
  • Researchers tested specific genes (six-3 and pax-6) and the BMP signaling pathway to understand how this regeneration can occur, particularly in ventral iris cells which normally don’t form a lens.
  • Results indicate that lens regeneration can be prompted in non-competent tissues through a combination of gene manipulation and signaling pathway inhibition, revealing a complex regulatory mechanism behind this process.

Article Abstract

Lens regeneration in adult newts is a classic example of how cells can faithfully regenerate a complete organ through the process of transdifferentiation. After lens removal, the pigment epithelial cells of the dorsal, but not the ventral, iris dedifferentiate and then differentiate to form a new lens. Understanding how this process is regulated might provide clues about why lens regeneration does not occur in higher vertebrates. The genes six-3 and pax-6 are known to induce ectopic lenses during embryogenesis. Here we tested these genes, as well as members of the bone morphogenetic protein (BMP) pathway that regulate establishment of the dorsal-ventral axis in embryos, for their ability to induce lens regeneration. We show that the lens can be regenerated from the ventral iris when the BMP pathway is inhibited and when the iris is transfected with six-3 and treated with retinoic acid. In intact irises, six-3 is expressed at higher levels in the ventral than in the dorsal iris. During regeneration, however, only expression in the dorsal iris is significantly increased. Such an increase is seen in ventral irises only when they are induced to transdifferentiate by six-3 and retinoic acid or by BMP inhibitors. These data suggest that lens regeneration can be achieved in noncompetent adult tissues and that this regeneration occurs through a gene regulatory mechanism that is more complex than the dorsal expression of lens regeneration-specific genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388258PMC
http://dx.doi.org/10.1038/nature04175DOI Listing

Publication Analysis

Top Keywords

lens regeneration
20
lens
9
regeneration lens
8
ventral iris
8
bmp pathway
8
retinoic acid
8
dorsal iris
8
regeneration
7
six-3
5
iris
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!