The bacterial K+ channel KcsA from Streptomyces lividans was analyzed by neutron and x-ray small-angle solution scattering. The C-terminally truncated version of KcsA, amenable to crystallographic studies, was compared with the full-length channel. Analyzing the scattering data in terms of radius of gyration reveals differences between both KcsA species of up to 13.2 A. Equally, the real-space distance distribution identifies a 40 to 50 A extension of full-length KcsA compared to its C-terminally truncated counterpart. We show that the x-ray and neutron scattering data are amenable for molecular shape reconstruction of full-length KcsA. The molecular envelopes calculated display an hourglass-shaped structure within the C-terminal intracellular domain. The C-terminus extends the membrane spanning region of KcsA by 54-70 A, with a central constriction 10-30 A wide. Solution scattering techniques were further employed to characterize the KcsA channel under acidic conditions favoring its open conformation. The full-length KcsA at pH 5.0 shows the characteristics of a dumbbell-shaped macromolecular structure, originating from dimerization of the tetrameric K+ channel. Since C-terminally truncated KcsA measured under the same low pH conditions remains tetrameric, oligomerization of full-length KcsA seems to proceed via structurally changed C-terminal domains. The determined maximum dimensions of the newly formed complex increase by 50-60%. Shape reconstruction of the pseudooctameric complex indicates the pH-induced conformational reorganization of the intracellular C-terminal domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367324 | PMC |
http://dx.doi.org/10.1529/biophysj.105.071175 | DOI Listing |
J Am Chem Soc
May 2019
Laboratory of Physical Chemistry , ETH Zurich , 8093 Zurich , Switzerland.
In potassium (K) channels, permeation, selectivity, and gating at the selectivity filter are all governed by the thermodynamics and kinetics of the ion-protein interactions. Specific contacts between the carbonyl groups from the Thr-Val-Gly-Tyr-Gly signature filter sequence and the permeant ions generate four equidistant K binding sites, thereby defining the high ion selectivity and controlling the transport rate of K channels. Here, we used N-labeled ammonium (NH) as a proxy for K to study ion interaction with the selectivity filter of the prototypical full-length K channel KcsA by solution state NMR spectroscopy in order to obtain detailed insights into the physicochemical basis of K gating.
View Article and Find Full Text PDFChembiochem
March 2019
Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel.
The bacterial potassium channel KcsA is gated by pH, opening for conduction under acidic conditions. Molecular determinants responsible for this effect have been identified at the extracellular selectivity filter, at the membrane-cytoplasm interface (TM2 gate), and in the cytoplasmic C-terminal domain (CTD), an amphiphilic four-helix bundle mediated by hydrophobic and electrostatic interactions. Here we have employed NMR and EPR to provide a structural view of the pH-induced open-to-closed CTD transition.
View Article and Find Full Text PDFJ Gen Physiol
October 2018
Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
C-type inactivation is a time-dependent process observed in many K channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the process remain elusive. Here, we use molecular dynamics (MD) simulations of the KcsA channel to elucidate the nature of kinetically delayed activation/inactivation gating coupling.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Department of Chemistry, Columbia University, New York, NY 10027
The slow spontaneous inactivation of potassium channels exhibits classic signatures of transmembrane allostery. A variety of data support a model in which the loss of K ions from the selectivity filter is a major factor in promoting inactivation, which defeats transmission, and is allosterically coupled to protonation of key channel activation residues, more than 30 Å from the K ion binding site. We show that proton binding at the intracellular pH sensor perturbs the potassium affinity at the extracellular selectivity filter by more than three orders of magnitude for the full-length wild-type KcsA, a pH-gated bacterial channel, in membrane bilayers.
View Article and Find Full Text PDFJ Phys Chem Lett
February 2017
Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida-gun, Fukui 910-1193, Japan.
Here, we have developed a method of oriented reconstitution of the KcsA potassium channel amenable to high-resolution AFM imaging. The solubilized full-length KcsA channels with histidine-tagged (His-tag) C-terminal ends were attached to a Ni-coated mica surface, and then detergent-destabilized liposomes were added to fill the interchannel space. AFM revealed that the membrane-embedded KcsA channels were oriented with their extracellular faces upward, seen as a tetrameric square shape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!