Paracoccidioides brasiliensis is a thermodimorphic fungus associated with paracoccidioidomycosis (PCM), a systemic mycosis prevalent in South America. In humans, infection starts by inhalation of fungal propagules, which reach the pulmonary epithelium and transform into the yeast parasitic form. Thus, the mycelium-to-yeast transition is of particular interest because conversion to yeast is essential for infection. We have used a P. brasiliensis biochip carrying sequences of 4,692 genes from this fungus to monitor gene expression at several time points of the mycelium-to-yeast morphological shift (from 5 to 120 h). The results revealed a total of 2,583 genes that displayed statistically significant modulation in at least one experimental time point. Among the identified gene homologues, some encoded enzymes involved in amino acid catabolism, signal transduction, protein synthesis, cell wall metabolism, genome structure, oxidative stress response, growth control, and development. The expression pattern of 20 genes was independently verified by real-time reverse transcription-PCR, revealing a high degree of correlation between the data obtained with the two methodologies. One gene, encoding 4-hydroxyl-phenyl pyruvate dioxygenase (4-HPPD), was highly overexpressed during the mycelium-to-yeast differentiation, and the use of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione], a specific inhibitor of 4-HPPD activity, as well as that of NTBC derivatives, was able to inhibit growth and differentiation of the pathogenic yeast phase of the fungus in vitro. These data set the stage for further studies involving NTBC and its derivatives as new chemotherapeutic agents against PCM and confirm the potential of array-based approaches to identify new targets for the development of alternative treatments against pathogenic microorganisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317488PMC
http://dx.doi.org/10.1128/EC.4.12.2115-2128.2005DOI Listing

Publication Analysis

Top Keywords

paracoccidioides brasiliensis
8
mycelium-to-yeast transition
8
ntbc derivatives
8
transcriptome analysis
4
analysis paracoccidioides
4
brasiliensis cells
4
cells undergoing
4
mycelium-to-yeast
4
undergoing mycelium-to-yeast
4
transition paracoccidioides
4

Similar Publications

A new quantitative reverse transcription PCR assay to improve the routine diagnosis of paracoccidioidomycosis.

Med Mycol

January 2025

Mycology Department, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, Paris, France.

Paracoccidioides are dimorphic fungal pathogens and the etiological agents of paracoccidioidomycosis (PCM). This severe systemic mycosis is restricted to Latin America, where it has been historically endemic. Currently, PCM presents the fewest diagnostic tools available when compared to other endemic mycoses.

View Article and Find Full Text PDF

Paracoccidioidomycosis (PCM) is a chronic endemic mycosis in Latin America, predominantly caused by (Pb18) and (Pl01). Diagnosing PCM is challenging due to species-specific antigenic differences, therefore new biomarkers for accurate and rapid detection are needed. This study explores multiple tolerization subtractive immunization (MTSI) to generate monoclonal antibodies against rare or weakly expressed epitopes of Pb18 and Pl01, potentially improving PCM diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • The herbicide glyphosate effectively inhibits the enzyme EPSPS, highlighting the shikimate pathway as a target for developing new antimicrobial and herbicidal agents.
  • The final enzyme in this pathway, chorismate synthase (CS), was tested with various azo-dyes, leading to the identification of PH011669 as a significant inhibitor with specific dissociation and inhibition values.
  • The study utilized molecular docking and MD simulations to analyze how PH011669 interacts with CS, providing foundational insights for future development of novel enzyme inhibitors.
View Article and Find Full Text PDF

We report a patient with lobomycosis caused by Paracoccidioides loboi fungi in the Andes-Amazon region of Bolivia. We examined clinical, epidemiologic, and phylogenetic data and describe potential transmission/environmental aspects of infection. Continued surveillance and identification of lobomycosis cases in South America are crucial to prevent the spread of this disease.

View Article and Find Full Text PDF

miRNAs regulate the metabolic adaptation of Paracoccidioides brasiliensis during copper deprivation.

Microbes Infect

November 2024

Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil. Electronic address:

Article Synopsis
  • - Copper is vital for cellular functions like detoxifying harmful molecules and energy production, but during infections, the body limits its availability to hinder pathogens.
  • - The study investigates the role of miRNAs (a type of regulatory molecule) in the response of the fungus P. brasiliensis to low copper levels, complementing earlier findings on iron and zinc.
  • - Using RNA sequencing, researchers identified 14 miRNAs that change expression during copper scarcity, with implications for processes like oxidative stress and cell structure adaptation, indicating miRNAs play a key role in the fungus’s metabolic adjustments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!