Pneumocystis, a fungal, extracellular pathogen causes a life-threatening pneumonia in patients with severe immunodeficiencies. In the absence of CD4 T cells, Pneumocystis infection results in vigorous CD8 T cell influx into the alveolar and interstitial spaces of the lung. This response results in lung damage characterized by low pO2 and albumin leakage into the bronchoalveolar lavage fluid similar to other CD8 T cell-mediated interstitial lung diseases. How this extracellular pathogen elicits a CD8 T cell response is not clear, and it was the aim of our study to determine the Ag specificity of the recruited CD8 T cells and to determine whether MHC class I (MHC I) expression was necessary to initiate lung damage. Using an adoptive T cell-transfer model with either polyclonal wild-type CD8 T cells or transgenic influenza virus-specific CD8 T cells we found that CD8 T cell recruitment is Ag-specific and requires the continuous presence of the Pneumocystis pathogen. Bone marrow chimera experiments using Rag-1 and beta2-microglobulin-deficient mice as hosts demonstrated a requirement for MHC I expression on nonbone marrow-derived cells of the lung. This suggests either direct processing of Pneumocystis Ags by nonbone marrow-derived cells of the lung or the induction of lung damage triggered by a lung-specific autoantigen. Using perforin-, Fas-, and IFN-gamma-deficient animals, we showed that these molecules are not directly involved in the CD8-mediated lung damage. However, CD8 T cell-mediated lung damage is Ag-specific is induced by a MHC I-expressing nonbone marrow-derived cell in the lung and is dependent on the continued presence of live Pneumocystis.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.175.12.8271DOI Listing

Publication Analysis

Top Keywords

lung damage
24
cd8 cell-mediated
12
lung
12
extracellular pathogen
12
cd8 cell
12
cd8 cells
12
nonbone marrow-derived
12
cd8
9
cell-mediated lung
8
mhc class
8

Similar Publications

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.

Int J Biol Macromol

January 2025

Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:

As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

Sorafenib-Loaded Silica-Containing Redox Nanoparticle Decreases Tumorigenic Potential of Lewis Lung Carcinoma.

Pharmaceutics

January 2025

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.

Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!